이 강좌에 대하여

최근 조회 50,043

학습자 경력 결과

56%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

60%

가 이 강좌를 통해 확실한 경력상 이점을 얻음

17%

가 급여 인상 또는 승진 성취
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 4개 강좌 중 2번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
고급 단계
완료하는 데 약 27시간 필요
영어

학습자 경력 결과

56%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

60%

가 이 강좌를 통해 확실한 경력상 이점을 얻음

17%

가 급여 인상 또는 승진 성취
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 4개 강좌 중 2번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
고급 단계
완료하는 데 약 27시간 필요
영어

제공자:

Placeholder

IBM

강의 계획 - 이 강좌에서 배울 내용

콘텐츠 평가Thumbs Up83%(3,053개의 평가)Info
1

1

완료하는 데 6시간 필요

Setting the stage

완료하는 데 6시간 필요
10개 동영상 (총 59분), 2 개의 읽기 자료, 3 개의 테스트
10개의 동영상
Linear algebra5m
High Dimensional Vector Spaces2m
Supervised vs. Unsupervised Machine Learning4m
How ML Pipelines work3m
Introduction to SparkML20m
What is SystemML (1/2) ?3m
What is SystemML (2/2) ?6m
How to use Apache SystemML in IBM Watson Studio4m
Extract - Transform - Load3m
2개의 읽기 자료
Object Store10m
IMPORTANT: How to submit your programming assignments10m
2개 연습문제
Machine Learning30m
ML Pipelines30m
2

2

완료하는 데 10시간 필요

Supervised Machine Learning

완료하는 데 10시간 필요
26개 동영상 (총 131분), 1 개의 읽기 자료, 10 개의 테스트
26개의 동영상
LinearRegression with Apache SparkML6m
Linear Regression using Apache SystemML3m
Batch Gradient Descent using Apache SystemML8m
The importance of validation data to prevent overfitting3m
Important evaluation measures2m
Logistic Regression1m
LogisticRegression with Apache SparkML4m
Probabilities refresher6m
Rules of probability and Bayes' theorem10m
The Gaussian distribution4m
Bayesian inference4m
Bayesian inference - example9m
Maximum a posteriori estimation5m
Bayesian inference in Python8m
Why is Naive Bayes "naive"7m
Support Vector Machines3m
Support Vector Machines using Apache SparkML8m
Crossvalidation1m
Hyper-parameter tuning using GridSearch3m
Decision Trees2m
Bootstrap Aggregation (Bagging) and RandomForest1m
Boosting and Gradient Boosted Trees6m
Gradient Boosted Trees with Apache SparkML2m
Hyperparameter-Tuning using GridSeach and CrossValidation in Apache SparkML on Gradient Boosted Trees3m
Regularization3m
1개의 읽기 자료
Classification evaluation measures10m
9개 연습문제
Linear Regression30m
Splitting and Overfitting30m
Evaluation Measures30m
Logistic Regression30m
Naive Bayes30m
Support Vector Machines30m
Testing, X-Validation, GridSearch30m
Enselble Learning30m
Regularization30m
3

3

완료하는 데 5시간 필요

Unsupervised Machine Learning

완료하는 데 5시간 필요
13개 동영상 (총 67분), 1 개의 읽기 자료, 3 개의 테스트
13개의 동영상
Introduction to Clustering: k-Means3m
Hierarchical Clustering3m
Density-based clustering (Guest Lecture Saeed Aghabozorgi)4m
Using K-Means in Apache SparkML2m
Curse of Dimensionality9m
Dimensionality Reduction4m
Principal Component Analysis6m
Principal Component Analysis (demo)6m
Covariance matrix and direction of greatest variance8m
Eigenvectors and eigenvalues8m
Projecting the data4m
PCA in SystemML2m
1개의 읽기 자료
Reading on Clustering Evaluation and Assessment10m
2개 연습문제
Clustering30m
PCA30m
4

4

완료하는 데 6시간 필요

Digital Signal Processing in Machine Learning

완료하는 데 6시간 필요
13개 동영상 (총 108분)
13개의 동영상
Fourier Transform in action6m
Signal generation and phase shift11m
The maths behind Fourier Transform11m
Discrete Fourier Transform16m
Fourier Transform in SystemML15m
Fast Fourier Transform7m
Nonstationary signals5m
Scaleograms7m
Continous Wavelet Transform3m
Scaling and translation3m
Wavelets and Machine Learning3m
Wavelets transform and SVM demo6m
2개 연습문제
Fourier Transform30m
Wavelet Transform30m

검토

ADVANCED MACHINE LEARNING AND SIGNAL PROCESSING의 최상위 리뷰

모든 리뷰 보기

Advanced Data Science with IBM 특화 과정 정보

Advanced Data Science with IBM

자주 묻는 질문

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.