Chevron Left
Applied Data Science Capstone(으)로 돌아가기

IBM의 Applied Data Science Capstone 학습자 리뷰 및 피드백

4.7
별점
6,054개의 평가
810개의 리뷰

강좌 소개

This capstone project course will give you a taste of what data scientists go through in real life when working with real datasets. You will assume the role of a Data Scientist working for a startup intending to compete with SpaceX, and in the process follow the Data Science methodology involving data collection, data wrangling, exploratory data analysis, data visualization, model development, model evaluation, and reporting your results to stakeholders. You are tasked with predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully. SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if you can accurately predict the likelihood of the first stage rocket landing successfully, you can determine the cost of a launch. With the help of your Data Science findings and models, the competing startup you have been hired by can make more informed bids against SpaceX for a rocket launch. This course is the final course in the IBM Data Science Professional Certificate as well as the Applied Data Science with Python Specialization. It is expected that you have completed all of the prior courses in the specialization/certificate before starting this one, as it requires the application of the knowledge and skills taught in those courses. In this course, there will not be too much new learning, and instead, the focus will be on hands-on work to demonstrate what you have learned in the previous courses. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge upon successful completion of the course....

최상위 리뷰

LD

2019년 10월 23일

Its was great experience in completing the project using all skills that we learned in the course, thanks to coursera and IBM for giving me an opportunity to update my selft and also to test my skills

SG

2020년 3월 3일

Very good capstone project. Learnt lot of insights on how to represent data through out this course.\n\nVery good starting point for ""Data Science" field. I would definitely recommend this course.

필터링 기준:

Applied Data Science Capstone의 815개 리뷰 중 26~50

교육 기관: Nchedolisa A

2019년 4월 1일

This course certainly made me put in the work!! The project requires alot of planning to figure out exactly what you want to focus your analysis on. It definitely forced me to do alot of self-learning in order to complete it. StackOverflow became my best friend when I would get stuck and not know the proper python syntax to execute my desired outcome. Having to create a report and blogpost to document my analysis were definitely two new skill sets I appreciated that this course helped me to learn.

교육 기관: ADIL B

2019년 12월 5일

Started with no programming knowledge, took this while working a full time job, it was not always easy, but i am really glad that i took the decision to go out from my confort zone. Today i can handle topics like machine learning, data analysis and visualization with python. thanks for the IBM team who really has done an amazing job on this course.

교육 기관: Toan L T

2018년 11월 15일

Must take to complete this wonderful specialization.

You will have a change to apply everything you learned. And you have the freedom to choose the topic that you are interested in.

After this course, you will have a report, a blogpost and a notebook with complete code. With which you can showcase your achievement along the certificate.

교육 기관: Samir S

2019년 2월 15일

Think this one should have been marked by the course moderators and not fellow students.

교육 기관: Pawel L

2019년 7월 14일

To much focus on Foursquare API

교육 기관: Olivia V

2021년 1월 12일

A considerable part of the required work (and grading) is on material not taught in this course or the previous ones in the Certificate (web scraping, turning a Jupyter Notebook into a presentation or a report). Instructions are often unclear ("explore..."). Some technical problems are not mentioned, leading a time-consuming researches, even though it appear in the forums they are known to the teaching staff (using nbviewer to make Folium maps visible in Github).

Overall, it is disappointing to spend so much time relying on Google search when one was expecting content taught and delivered by IBM.

교육 기관: Mildred O

2020년 9월 16일

It would be great if resetting deadlines wouldn't erase all work/grades previously done/achieved.

교육 기관: Pablo V V

2019년 4월 2일

more exercises, more projects.

교육 기관: Teja S

2019년 6월 20일

If I have to say one thing about Coursera or IBM Data Science Professional Certificate course, I would say it as a Fantastic thing happened in my life, I am so happy with it, and I am not going to leave Coursera for ever.

교육 기관: TJ G

2019년 6월 20일

Very difficult to manage the scope, but it is a self-learning process. Recommend extending the Capstone course another week or two, to encourage the students to go all in on their work.

교육 기관: Ozgur U

2020년 7월 3일

I finished all he 9 courses in this specialisation. Therefore, this comment basically applies most of the 9 courses.

The video contents and the practice exercises are very good and on point. Instructors are great. However, there are serious problems with the assessment mechanism and this is the reason why I am giving a 4 start.

If you work hard on the assignments, meaning that you study and research well to understand the code, you might end up getting a low score on assignments. This is because of peer-graded assignments. Your work might be graded by someone who doesn't understand the material as much as you do, or even someone who submitted a blank file just to see others' work. You rarely get feedback for the missing marks. As a simple example, I once submitted my work and received 4/11 with no feedback. I instantly re-submitted the same work and received 9/11 from another peer.

Another problem is that you get to see the rubric only after you submit. Some assignments are not clear on what the specific expectations are. The rubric must be clear before you submit the work. Even if you try to be flexible in your solution to address the vagueness, the peers may not show the same flexibility although you do the work properly.

And finally, the biggest issue.. Plagiarism! When I say plagiarism here, I mean copying someone else's work line by line all the way. It is utterly disgusting that it is more widespread than I initially thought. Such cases have been posted multiple times in the forum. I encountered at least 2 cases of plagiarism. The only thing you can do is to flag the submission, but obviously this doesn't stop anyone. What's worse is that those people who plagiarised someone else's work line by line get to peer-grade your own work.

Assessment section of these courses is a mess and has to be seriously re-evaluated. Peer graded assignments can be accepted to a certain extend but not for assignments that require hours and hours of our effort.

교육 기관: Lucien C

2021년 9월 23일

The content is good but I felt that the final deliverable is too long (47 slides where pictures from 7 notebooks need to be patiently copy paste and query results provided by screenshots..)

교육 기관: Zoltán H

2020년 10월 1일

I enjoyed working on an open ended project, which was not the case in the remaining 8 courses in this specialisation. I was completely unprepared for some common challenges with a real life dataset and it took me a hard time to address them. On the other hand, it is hideous that only one person reviews your assignment and there are absolutely no requirements regarding the accuracy of the results. I mean who would accept a statistical model with the lowest possible accuracy in your new dream job? Anyhow, the only reason why I kept improving my project is just to show it to my potential future employer and not because of the requirements. The other funny thing is the cavalcade of "Please review my assignment" threads in the discussion forums, which makes it impossible to have a meaningful discussion there. In conclusion, I did other courses on Coursera, but this one had a far lower quality than those.

교육 기관: Deleted A

2020년 6월 23일

This course's content is out of date. Students have to rely on the posts of other students to work around issues with the course. This is a real shame as the other courses required to receive the certification are well maintained.

교육 기관: Dillon R

2020년 10월 14일

The course project was changed 4 days before the due date. This is unfair and it is a waste of time. If you don't want to waste 2 weeks of your time I would advise you not to take this course.

교육 기관: mustansir D

2020년 6월 7일

This course is full of bugs (outdated) and lack of explanation for certain matter is seen in Discussion Forums.

교육 기관: Ferenc F P

2019년 2월 26일

This is really challenging course, especially that you get hint on how to use a RESTful API (of Foursquare), how to create heat maps, or create different marking on a map using folium. The Capstone was really challenging, because you can practice what you have learned during the courses of the specialization, like how to start from the scratch a project, how to apply the data science methodology, like business understanding, gathering, analyzing, and cleaning data (most of your time you will spend on this), applying the right machine learning algorithm to solve the problem (modeling), using Jupyter Notebook on IBM cloud and using github. In the end you should also prepare your final report including the business understanding, describing your data, presenting your result, and placing a discussion section in the end. It took me 4 full days to complete the capstone, but I learned a lot.

교육 기관: Piyush L

2019년 10월 21일

This is the best part of the specialization and I learned a lot in this Capstone Project. If you've been doing all of the 8 previous courses, believe me those 8 courses are nothing compared to this course when it comes to putting time and hard work. You will learn a lot of things including web scraping, connecting to a url, using geolocation services to get data about a location. You'll also use foursquare API to get popular venues in a particular location. This project is super interesting but at the same you have to put in a lot of work too! It took me more than a month to do this capstone alone but it can be easily done in around 3 weeks if you're dedicated in completing it.

교육 기관: JAMES C

2019년 7월 14일

Good class, very useful. Peer grading is a great idea, don't like the practice of posting notes in the forum with subjects like "You grade mine and I'll grade yours." At the least, it gives the appearance of cheating. It is also wasteful, as it leads to some assignments being graded multiple times while others are waiting in the queue. This is a practice that Coursera encourages, which is baffling to me. Even in the last class in a 9 class series, I ran into people submitting blank or nearly blank assignments, with no content or inappropriate content, who were apparently hoping for a pity pass or cheating.

교육 기관: Nur C N

2019년 7월 23일

This course is really good and give enough challenge on the final project, especially on how to get data from multiple sources: scraping data from web, call APIs, and visualize it on map after call the clustering algorithm. I like the way we should prepare all material to complete the course like visual presentation with slide/blog post, report, and share the code in GitHub. Really glad I take all these 9 courses, can't wait to take other specialization course.

교육 기관: Marvin L

2019년 10월 31일

It was very good.. Overall. few things I like to add.

Sharing my notebook from Cloud was not working a lots time.

GitHub , or Jupiter Notebook with simple 2 lines of coding did not work..

Also, a lot of time, cloud machine just spins.. -- without showing it

My resource got close to limit , - Could not add more code..

Instructions were out of date, could not be applied current version

Working with Cloud machine was challenging !!

교육 기관: LEOPOLDO S

2019년 1월 8일

Very Good. This is my first contact with data science with python and associated packages.

In the end of the course I'm able to deal with data using python and a lot of tools that helps the job and let this job more fun.

A very well organized and balanced course with videos and very good material for practical labs.

I have a Swisse Knife with me to deal with future researches on data science.

Thanks.

교육 기관: sumit g

2020년 1월 26일

The course was very helpful in presenting me the world of data science, what exactly are the things we need to be proficient in to excel in this field ! Best course of all was Machine learning with Python, you will enjoy doing it ! and we need more questions in quiz to test what student has gained at every step.

교육 기관: Naga M

2018년 12월 16일

This is a very useful capstone project in which you can apply all the learning you have done throughout the course, the more practice you do the more you learn. I like this course from coursera and recommend it for data science aspirants.

Thank You!

교육 기관: David M

2020년 6월 6일

This Program was well structured, it was a great combination of learning and problem solving. You also got a great chance to see how useful data can be and how easy it is to make it work for you