이 강좌에 대하여

최근 조회 57,877
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 23시간 필요
영어
자막: 영어

배울 내용

  • Understand the forecasting process

  • Describe time series data

  • Develop an ARIMA Model

  • Understand a basic trading algorithm

공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 23시간 필요
영어
자막: 영어

제공자:

일리노이대학교 어버너-섐페인캠퍼스 로고

일리노이대학교 어버너-섐페인캠퍼스

석사 학위 취득 시작

This 강좌 is part of the 100% online Master of Science in Accountancy (iMSA) from 일리노이대학교 어버너-섐페인캠퍼스. If you are admitted to the full program, your courses count towards your degree learning.

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 2시간 필요

Course Introduction

완료하는 데 2시간 필요
10개 동영상 (총 48분), 5 개의 읽기 자료, 1 개의 테스트
10개의 동영상
Interview with Jose Rodriguez6m
Tour of R and RStudio5m
Projects3m
Math Function4m
Scalar Variables6m
Column Vectors9m
Data Frame6m
Data Frame Import2m
Help and Cheat Sheets2m
5개의 읽기 자료
Syllabus30m
Glossary10m
Update Your Profile10m
About the Discussion Forums10m
Data Download Tutorial10m
1개 연습문제
Orientation Quiz10m
완료하는 데 4시간 필요

Module 1: Introduction to Financial Analytics and Time Series Data

완료하는 데 4시간 필요
6개 동영상 (총 44분), 2 개의 읽기 자료, 4 개의 테스트
6개의 동영상
Lesson 1-1.1 Subjective Forecasting6m
Lesson 1-1.2 Business Forecasting and Time Series Data7m
Lesson 1-2.1 Introduction to Financial Analytics10m
Lesson 1-3.1 Forecasting Performance Measurements: Distance6m
Lesson 1-3.2 Forecasting Performance Measurements: Metrics10m
2개의 읽기 자료
Module 1 Overview20m
Module 1 Readings1시간 30분
4개 연습문제
Lesson 1-1 Practice Quiz10m
Lesson 1-2 Practice Quiz10m
Lesson 1-3 Practice Quiz10m
Module 1 Quiz30m
2

2

완료하는 데 5시간 필요

Module 2: Performance Measures and Holt-Winters Model

완료하는 데 5시간 필요
15개 동영상 (총 92분), 2 개의 읽기 자료, 7 개의 테스트
15개의 동영상
Lesson 2-1.1 Introduction to Forecasting: Average Method6m
Lesson 2-1.2 Introduction to Forecasting: Naive Method3m
Lesson 2-1.3 Introduction to Forecasting: Linear Regression13m
Lesson 2-1.4 Introduction to Forecasting: R Example4m
Lesson 2-2.1 Moving Averages6m
Lesson 2-2.2 Moving Averages: R Example6m
Lesson 2-3.1 Introduction to Exponential Smoothing5m
Lesson 2-3.2 Simple Exponential Smoothing8m
Lesson 2-3.3 Simple Exponential Smoothing: R Example5m
Lesson 2-4.1 Holt's Exponential Smoothing7m
Lesson 2-4.2 Holt-Winter's Forecasting Model4m
Lesson 2-4.3 Holt-Winter's Model: R Example7m
Lesson 2-5.1 Autoregression6m
Lesson 2-5.2 Autoregression: R Example2m
2개의 읽기 자료
Module 2 Overview20m
Module 2 Readings7m
6개 연습문제
Lesson 2-1 Practice Quiz10m
Lesson 2-2 Practice Quiz10m
Lesson 2-3 Practice Quiz30m
Lesson 2-4 Practice Quiz30m
Lesson 2-5 Practice Quiz10m
Module 2 Quiz30m
3

3

완료하는 데 5시간 필요

Module 3: Stationarity and ARIMA Model

완료하는 데 5시간 필요
10개 동영상 (총 54분), 2 개의 읽기 자료, 4 개의 테스트
10개의 동영상
Lesson 3-1.1 Stationarity: Introduction5m
Lesson 3-1.2 Stationarity: Differencing11m
Lesson 3-2.1 ARIMA: Introduction6m
Lesson 3-2.2 ARIMA: Components7m
Lesson 3-2.3 ARIMA: Model and R Example Part 17m
Lesson 3-2.4 ARIMA: Model and R Example Part 24m
Lesson 3-2.5 ARIMA: Model and R Example Part 31m
Lesson 3-2.6 ARIMA: Model and R Example Part 43m
Lesson 3-2.7 ARIMA: Model and R Example Part 54m
2개의 읽기 자료
Module 3 Overview20m
Module 3 Readings30m
3개 연습문제
Lesson 3-1 Practice Quiz30m
Lesson 3-2 Practice Quiz30m
Module 3 Quiz30m
4

4

완료하는 데 7시간 필요

Module 4: Modern Portfolio Theory and Intro to Algorithmic Trading

완료하는 데 7시간 필요
14개 동영상 (총 76분), 2 개의 읽기 자료, 4 개의 테스트
14개의 동영상
Lesson 4-1.1 Portfolio Theory: Introduction3m
Lesson 4-1.2 Portfolio Theory: Expected Returns4m
Lesson 4-1.3 Portfolio Theory: Risk of a Security6m
Lesson 4-1.4 Portfolio Theory: Efficient Frontier6m
Lesson 4-1.5 Portfolio Theory: Portfolio Weights7m
Lesson 4-1.6 Portfolio Theory: Capital Allocation Line10m
Lesson 4-1.7 Portfolio Theory: Diversification3m
Lesson 4-2.1 Introduction to Algorithmic Trading7m
Lesson 4-2.2 Introduction to Algorithmic Trading: Trend Following Strategy3m
Lesson 4-2.3 Introduction to Algorithmic Trading: Backtesting6m
Lesson 4-2.4 Introduction to Algorithmic Trading: R Example9m
Lesson 4-2.5 Introduction to Algorithmic Trading: Conclusion1m
Course Summary: Applying Data Analytics in Finance1m
2개의 읽기 자료
Module 4 Overview20m
Module 4 Readings1시간
3개 연습문제
Lesson 4-1 Practice Quiz30m
Lesson 4-2 Practice Quiz30m
Module 4 Quiz1시간

검토

APPLYING DATA ANALYTICS IN FINANCE의 최상위 리뷰

모든 리뷰 보기

자주 묻는 질문

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You’ll be prompted to complete an application and will be notified if you are approved. Learn more.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.