This course can also be taken for academic credit as ECEA 5612, part of CU Boulder’s Master of Science in Electrical Engineering degree.
이 강좌에 대하여
Undergraduate-level calculus, differential equations and linear algebra
배울 내용
Distinguish non-degenerate and degenerate cases and use appropriate methods.
Perform calculations using the time-independent perturbation theory.
Describe absorption and stimulated emission processes.
Obtain approximate solutions using the variational method.
귀하가 습득할 기술
- Energy
- Energy Level
- Perturbation Theory
- Quantum Mechanics
Undergraduate-level calculus, differential equations and linear algebra
제공자:

콜로라도 대학교 볼더 캠퍼스
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
석사 학위 취득 시작
강의 계획표 - 이 강좌에서 배울 내용
Time-independent Perturbation Theory
In this module we will introduce the course on approximation methods commonly used in quantum mechanics and then discuss time-independent perturbation theory. We will first discuss non-degenerate perturbation theory and derive useful formulas for the first- and second-order corrections. We will then discuss degenerate perturbation theory. We will also discuss specific examples where the various perturbation methods are used - Stark effect, fine structure and Zeeman effect.
Time-dependent Perturbation Theory
In this module, we will introduce interaction picture and derive time evolution equations. After discussing a simple but illuminating example of two-state system, we develop time-dependent perturbation theory and discuss the probability of transitions between quantum states induced by external perturbation.
Other Approximation Methods
This module covers several non-perturbative approximation methods. They are the tight binding method, variational method and the use of finite basis set.
Quantum Mechanics for Engineers 특화 과정 정보
This Specialization is intended for engineers seeking to acquire fundamental understanding of quantum mechanics which are the basis of modern electrical, mechanical and quantum engineering. Through 3 courses, you will learn (1) basic concepts such as superposition and entanglement of quantum states, measurement in quantum mechanics and uncertainty principle, (2) mathematical tools needed to describe and manipulate quantum states, (3) advanced theory of angular momentum and (4) approximation methods widely applicable in many fields.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.