Chevron Left
Audio Signal Processing for Music Applications(으)로 돌아가기

바르셀로나 폼페우 파브라 대학교의 Audio Signal Processing for Music Applications 학습자 리뷰 및 피드백

4.8
별점
277개의 평가
85개의 리뷰

강좌 소개

In this course you will learn about audio signal processing methodologies that are specific for music and of use in real applications. We focus on the spectral processing techniques of relevance for the description and transformation of sounds, developing the basic theoretical and practical knowledge with which to analyze, synthesize, transform and describe audio signals in the context of music applications. The course is based on open software and content. The demonstrations and programming exercises are done using Python under Ubuntu, and the references and materials for the course come from open online repositories. We are also distributing with open licenses the software and materials developed for the course....

최상위 리뷰

LN

2016년 12월 3일

Top class! Very well explained, good examples, excellent learning material, practical exercises, and lots and lots of room for further personal study! Well done guys, and especially Xavier! Cheers!

EO

2019년 12월 8일

An absolutely awesome introduction to Audio Signal Processing. The additive introduction of new concepts is capable of teaching any beginner this topic which ordinarily is difficult to understand.

필터링 기준:

Audio Signal Processing for Music Applications의 85개 리뷰 중 51~75

교육 기관: Caleb C

2017년 9월 7일

Great course! Enjoyable and learned a lot. Not easy!

교육 기관: Yu T W

2016년 9월 26일

This course is what i have been longing for :)))

교육 기관: Jenny L

2018년 5월 27일

This course is amazing I wish I can give 6 stars

교육 기관: Amauri B S

2018년 2월 14일

Very good material! Very interesting subject!

교육 기관: Ghislain S

2017년 3월 6일

I learned a lot and had fun at the same time

교육 기관: OMAR Y G

2018년 4월 13일

best course to apply your math knowledment

교육 기관: Martin B

2019년 1월 5일

Very interesting and well explained

교육 기관: Jackie D

2017년 9월 17일

awesome course on music application

교육 기관: ruchi g

2019년 10월 8일

every topic is very well explained

교육 기관: 刘冰

2018년 4월 9일

great course, learned a lot for it

교육 기관: Liu S

2017년 6월 5일

Very interesting and useful class

교육 기관: Clemens Z

2022년 2월 4일

Thanks a lot! Very good course!

교육 기관: jesús r g

2021년 11월 15일

All the course is great

교육 기관: Nikhil N

2020년 6월 1일

A fantastic course!

교육 기관: Gennaro G

2021년 11월 22일

wonderfull course!

교육 기관: Vital P R

2022년 4월 21일

Good Course

교육 기관: Payne K

2016년 9월 28일

nice class!

교육 기관: JUAN M M G

2017년 9월 5일

Excelente!

교육 기관: Matthew Z

2016년 12월 7일

Thank you!

교육 기관: Alexander A S G

2017년 7월 20일

Excellent

교육 기관: a1440379085

2018년 1월 14일

good

교육 기관: Hiroki N

2020년 6월 4일

The course itself is very nice. However, the level of participants seems to have a significant problem. Some participants are not used to reviewing. They often lack an appropriate background in reviewing others, and give a bad grade for the A++ level submissions (for instance, I had A++ for related courses at University of Washington, and I am hiring a CCRMA graduate at my lab).

Possibly this could be a challenge for MOOC, yet obviously peer-reviewing by participants doesn't work fine for some topics, especially when some participants have a problem in understanding lecture materials.

I think there should be an opportunity for a rebuttal and moderators should handle it.

교육 기관: Omar

2020년 3월 7일

Really well crafted course. Assignments were challenging, but they make for a great learning experience. Also great is that the lectures walk you through the theory, the application, and programming aspects of the topic. Recommended for anyone who wants to learn about the Fourier Transform and about audio processing.

The only "but" is that the staff doesn't participate in the forums anymore (the last messages from them are like 2 years old). This wasn't a big deal for me as I didn't really participate much, but it gives the feeling that the course is not well cared for anymore.

교육 기관: Daman A

2019년 3월 7일

Assignments are easily doable without any application of real analysis skills. You guys should actually ask us to build certain parts of your models so that we achieve that level of skill.