About this Course
최근 조회 20,126

다음 전문 분야의 4개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

B​asic knowledge of programming (any language)

완료하는 데 약 16시간 필요

권장: 7 hours/week...

영어

자막: 영어

배울 내용

  • Check

    Develop data strategy and process for how data will be generated, collected, and consumed

  • Check

    Load and process formatted datasets such as CSV and JSON.

  • Check

    Deal with data in various formats (e.g. timestamps, strings) and filter and “clean” datasets by removing outliers etc.

  • Check

    Basic experience with data processing libraries such as numpy and data ingestion with urllib, requests

귀하가 습득할 기술

Python LibrariesData Pre-ProcessingData Visualization (DataViz)Web Scraping

다음 전문 분야의 4개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

B​asic knowledge of programming (any language)

완료하는 데 약 16시간 필요

권장: 7 hours/week...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 2시간 필요

Week 1: Introduction to Data Products

This week, we will go over the syllabus and set you up with the course materials and software. We will introduce you to data products and refresh your memory on Python and Jupyter notebooks.

...
6 videos (Total 42 min), 6 readings, 2 quizzes
6개의 동영상
Python and Jupyter Basics6m
Python Recap5m
Livecoding: Getting Started With Jupyter10m
6개의 읽기 자료
Syllabus10m
Course Materials10m
Set Up Your System10m
Our Case Study: Recommender Systems10m
(Optional) Python: How to Run10m
(Optional) Python: Additional Resources and Recommended Readings10m
2개 연습문제
Review: Data Products4m
Review: Python and Jupyter5m
2
완료하는 데 2시간 필요

Week 2: Reading Data in Python

This week, we will learn how to load in datasets from CSV and JSON files. We will also practice manipulating data from these datasets with basic Python commands.

...
6 videos (Total 54 min), 3 quizzes
6개의 동영상
Live-Coding: JSON5m
Extracting Simple Statistics From Datasets11m
Simple Statistics: Live-Coding8m
3개 연습문제
Review: CSV and JSON Files8m
Review: Simple Statistics10m
Python: Reading Data and Simple Statistics45m
3
완료하는 데 1시간 필요

Week 3: Data Processing in Python

This week, our goal is to understand how to clean up a dataset before analyzing it. We will go over how to work with different types of data, such as strings and dates.

...
4 videos (Total 38 min), 3 quizzes
3개 연습문제
Review: Data Filtering and Cleaning5m
Review: Processing Different Data Types5m
Data Processing in Python30m
4
완료하는 데 2시간 필요

Week 4: Python Libraries and Toolkits

In this last week, we will get a sense of common libraries in Python and how they can be useful. We will cover data visualization with numpy and MatPlotLib, and also introduce you to the basics of webscraping with urllib and BeautifulSoup.

...
5 videos (Total 45 min), 5 quizzes
5개의 동영상
Live-coding: MatPlotLib9m
urllib and BeautifulSoup12m
4개 연습문제
Review: NumPy4m
Review: MatPlotLib6m
Review: urllib and BeautifulSoup6m
Python Libraries and Toolkits15m

강사

Avatar

Julian McAuley

Assistant Professor
Computer Science
Avatar

Ilkay Altintas

Chief Data Science Officer
San Diego Supercomputer Center

캘리포니아 샌디에고 대학교 정보

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Python Data Products for Predictive Analytics 전문 분야 정보

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.