Chevron Left
Machine Learning With Big Data(으)로 돌아가기

캘리포니아 샌디에고 대학교의 Machine Learning With Big Data 학습자 리뷰 및 피드백

4.6
1,523개의 평가
295개의 리뷰

강좌 소개

Want to make sense of the volumes of data you have collected? Need to incorporate data-driven decisions into your process? This course provides an overview of machine learning techniques to explore, analyze, and leverage data. You will be introduced to tools and algorithms you can use to create machine learning models that learn from data, and to scale those models up to big data problems. At the end of the course, you will be able to: • Design an approach to leverage data using the steps in the machine learning process. • Apply machine learning techniques to explore and prepare data for modeling. • Identify the type of machine learning problem in order to apply the appropriate set of techniques. • Construct models that learn from data using widely available open source tools. • Analyze big data problems using scalable machine learning algorithms on Spark. Software Requirements: Cloudera VM, KNIME, Spark...

최상위 리뷰

PR

Jul 19, 2018

Excellent course, I learned a lot about machine learning with big data, but most importantly I feel ready to take it into more complex level although I realized there is lots to learn.

BK

Mar 06, 2020

This is starting course for Machine Learning. Very well explained and after finishing this course, one will get interest in continuing and exploring further in Machine Learning field.

필터링 기준:

Machine Learning With Big Data의 277개 리뷰 중 251~275

교육 기관: Hendrik B

Feb 21, 2018

It's better than the other courses of this specialization, but still I wouldn't say that the course is particularly good. Also, the instructors don't appear to care for the learning progress of the learners. There is next to no help via forums, for example. What I think was good is that the instructor attempts to explain the algorithms of the machine learning methods visually and comprehensively.

What I think is a joke is the way the quizzes are organized. The questions almost never deviate from a 'change a number or copy the code' style. Like this, you do not really learn anything instead of copying code and changing something. The quizzes need some additional parts where it is important to apply what is learned to new contexts. ADditionally, the instructors need to put more focus on explaining what certain parts of the code do and why certain parts of the codes are improtant- Otherwise, this course won't be worth more than learning by doing alone.

교육 기관: Riccardo P

Jun 01, 2018

Not so happy... it would be a little bit better if I attended this one before the ML course by Andrew NG...

Here, the topics are just introduced and poorly demonstrated using Knime and Spark.

Maybe, I had wrong expectations but, given the course title, you need to push more on Spark and leave the ML introduction to better courses like Andrew's one or a dedicated one.

Don't spare too much time with stuff like Course 2 and get some risks

교육 기관: Francisco P J

Aug 02, 2017

Some parts of the course are quite interesting, in concrete, the introduction to the Knime tool (so useful and open source tool which I will try to take a deep look on it as the course only provide a slightly overview). Otherwise, i think that the content is not enough, i don´t feel that I have fully understand the core of Machine Learning and its difference with other BD applications.

교육 기관: Beate S

Nov 16, 2017

I liked the theory parts, but had a to of problems with the hands on exercises: I spent a tremendous amount of time on installing/trying to install the necessary software. And not everything worked properly on my Mac Laptop.

교육 기관: Javier P C

Feb 19, 2020

I like this course, but is very old and doesn't have methods for programming like python or other. Please check the content and upgrade the software, for me, it doesn't work Cloudera VM and is very sad. More Quality.

교육 기관: Joren Z

Aug 28, 2017

A bird's-eye-overview introduction of the field. It teaches you some terms and it gives you ideas about which fields might be interesting for you if you want to really learn how to do machine learning with big data.

교육 기관: Anil B

Jan 21, 2019

It would have been better if more case studies to work were given. I am surprised that there is no working case study given for regression analysis.

교육 기관: Alberto T

Jun 14, 2017

many basic of machine learning but not so specific to big data, only hands-on with pyspark is big-data related

교육 기관: Miguel T

Aug 17, 2018

I miss some technical information about machine learning techniques such as neural networks.

교육 기관: PRERNA S

Mar 15, 2018

It was a basic course for initial understanding about Machine learning.

교육 기관: Francisco J H A

Dec 24, 2019

The last week in my point of view is not linked to machine learning.

교육 기관: Rahul P

Aug 02, 2019

The Hands-On exercises were good. The theory part was too shallow.

교육 기관: Kartik K

Nov 23, 2018

The course should cover more topics about Machine Learning.

교육 기관: Ivan S

Mar 01, 2017

Very basic things... Any examples for regression.

교육 기관: J. A H P

Dec 29, 2016

It's ok for an extremely high-level overiew

교육 기관: Palash V S

Jan 27, 2018

Not hard, a very beginner-level course.

교육 기관: Artur L

Oct 27, 2017

Nice knowledge refresher

교육 기관: Tobias O F

Jul 31, 2017

The parts including KNIME was not interesting or educational, it was just an big grind. I feel once you are on a level to use KNIME you know that it is better (and easier) to use other frameworks where you have more control, therefor missing customers the program is meant for.

Additionally the last hands-on felt rushed and just copy-paste to some extent (to being able to complete the tasks), even for me having a lot of jupyter and machine learning background.

교육 기관: Csaba P O

Oct 04, 2017

This course is more "the very basics of machine learning" illustrated with some examples. The lectures were clear and logical, but honestly, very basic. Unfortunately the big data handsons (the ones with pyspark) are not explained very thoroughly, often they just state that "do this or do that" instead of explaining what is going on. All in all, I have expected more big-data related topics and less introduction to machine learning.

교육 기관: Erik P

Oct 17, 2017

The virtual machine in this course no longer is functioning. PySpark update seems to not play nice. I think the content also needs some updating for more modern machine learning techniques.. like using big data with deep learning systems like tensor flow or PyTorch.

교육 기관: Manfred K

Jul 14, 2017

I expected course with more in-depth and more difficult examples, I learned about a few new concepts, most methods were repetitions for me.

교육 기관: Alfonso A G

Dec 03, 2016

Machine learning is too simplified and spark part is not even explained, also very little relation of all course with Big Data.

교육 기관: Michal Š

Nov 18, 2016

Almost a useless course - ML overview using KNIME which gives no insight whatsoever.

교육 기관: Ruijia W

Nov 26, 2017

Too basic

교육 기관: Beatrice C

Dec 14, 2016

The course content is very poorly explained. The quiz questions don't really test what was taught in the lectures, and the assignments are just copying and pasting things. I feel like I still have a very poor understanding of what was supposedly covered in the course. I cannot generalise or apply the 'learned' information or skills to other topics or researches because I didn't actually understand the core concepts or how to use the programs.