About this Course
최근 조회 2,895

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 25시간 필요

권장: 6 semanas de estudio, 2-3 horas/semana...

스페인어

자막: 스페인어

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 25시간 필요

권장: 6 semanas de estudio, 2-3 horas/semana...

스페인어

자막: 스페인어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 4시간 필요

Introducción a la clasificación de imágenes

En esta primera semana explicaremos los fundamentos de la clasificación de imágenes y presentaremos todos los pasos de un primer sistema de clasificación básico. Para ello, primero veremos algunos conceptos básicos sobre el procesamiento de una imagen que nos servirán para introducir un primer método para detectar y describir características locales (SIFT) en una imagen. Luego veremos cómo podemos agrupar estas características locales para representar toda la imagen y explicaremos un primer clasificador simple, k-NN. Finalmente comentaremos los aspectos básicos de la evaluación del rendimiento de un sistema de clasificación de imágenes.

...
7 videos (Total 118 min), 9 readings, 3 quizzes
7개의 동영상
Descripción de características locales: SIFT22m
Correspondencia de imágenes10m
K-NN: Clasificación por vecino más cercano17m
Evaluación del rendimiento14m
9개의 읽기 자료
Antes de empezar10m
Temario10m
Formato del curso y evaluación10m
Preguntas frecuentes10m
Enlaces relacionados10m
Presentación del código10m
Instalación y configuración10m
Código y ejercicios para el módulo 110m
Más información10m
3개 연습문제
Prueba tus conocimientos16m
Prueba tus conocimientos8m
Cuestionario del módulo 120m
2
완료하는 데 3시간 필요

Bag of Words (BoW)

Esta semana introduciremos Bag of Words como método de representación básico que utilizaremos mayoritariamente a lo largo de todo el curso. Explicaremos todos los detalles necesarios para construir la representación BoW de una imagen, incluyendo la construcción del vocabulario utilizando K-Means y cómo agregar la información de las características locales en la representación final en forma de histograma. En la segunda parte de la semana explicaremos Support Vector Machines (SVM) como método de clasificación, tanto los conceptos fundamentales como su formulación matemática y los detalles para entrenar y utilizar un clasificador basado en SVM. Finalmente, completaremos la explicación de la evaluación del rendimiento que introducimos en la primera semana.

...
7 videos (Total 95 min), 4 readings, 3 quizzes
7개의 동영상
Support Vector Machines (SVM): Conceptos básicos12m
Support Vector Machines (SVM): Desarrollo matemático15m
Support Vector Machines (SVM): Cuestiones prácticas16m
Evaluación del rendimiento14m
4개의 읽기 자료
Conjunto de imágenes de entrenamiento y evaluación10m
Código para el módulo 210m
Ejercicios para el módulo 210m
Más información10m
3개 연습문제
Prueba tus conocimientos6m
Prueba tus conocimientos12m
Cuestionario del módulo 220m
3
완료하는 데 2시간 필요

Extracción de características

En esta semana completaremos la explicación de métodos de extracción de características que iniciamos en la primera semana ofreciendo alternativas a la utilización de SIFT. En concreto veremos SURF como un nuevo método de detección y extracción más eficiente computacionalmente que SIFT. Para aumentar la capacidad descriptiva de las características analizaremos otras estrategias para la detección de características locales e introduciremos descriptores que nos permitan tener en cuenta la información del color en la imagen. Veremos también como podemos también mejorar la eficiencia computacional reduciendo la dimensión de los descriptores de carácterísticas locales.

...
6 videos (Total 94 min), 3 readings, 1 quiz
6개의 동영상
Estrategias de selección de puntos de interés15m
Uso del color25m
Reducción de descriptores: PCA18m
3개의 읽기 자료
Código para el módulo 310m
Ejercicios para el módulo 310m
Más información10m
1개 연습문제
Cuestionario del módulo 320m
4
완료하는 데 2시간 필요

Estrategias de fusión

En esta semana veremos cómo podemos combinar diferentes descriptores que aportan diferente tipo de información en el esquema de representación BoW. Explicaremos los diferentes niveles a los que se puede hacer esta combinación: a nivel de descriptores locales (early fusion), a nivel de construcción del vocabulario (intemediate fusion) o a nivel de clasificador (late fusion)

...
5 videos (Total 63 min), 3 readings, 3 quizzes
5개의 동영상
Late fusion13m
Combinaciones en Late fusion15m
3개의 읽기 자료
Código para el módulo 410m
Ejercicios para el módulo 410m
Más información10m
3개 연습문제
Prueba tus conocimientos8m
Prueba tus conocimientos8m
Cuestionario del módulo 420m
4.4
24개의 리뷰Chevron Right

Clasificación de imágenes: ¿cómo reconocer el contenido de una imagen?의 최상위 리뷰

대학: EVAug 16th 2017

Estupendo curso! Estoy haciendo un TFG de un clasificador automático de sonidos y el curso me ha ayudado mucho a consolidar conceptos! 100% recomendable!!

대학: JEJan 9th 2018

Muy buen curso se aprende mucho y varias maneras para realisarlo a demás que se entiende de manera fácil

강사

Avatar

Ernest Valveny

Catedrático Escuela Universitaria
Departamento de Ciencias de la Computación
Avatar

Jordi Gonzàlez Sabaté

Profesor Titular de Universidad
Departamento de Ciencias de la Computación
Avatar

Ramon Baldrich Caselles

Profesor titular
Departamento de Ciencias de la Computación

바르셀로나 자치대학교 정보

The Universitat Autònoma de Barcelona (UAB) is a public university located in the metropolitan area of Barcelona. International in its outlook, it is fully consolidated within its local surroundings, and offers quality education in close association with research activity, the transfer of scientific, technological, cultural and educational knowledge, the promotion of its human potential and the responsible management of available resources. The UAB currently offers 81 degrees, 130 official Master Programmes and 183 UAB-specific Masters Degrees. In addition, it offers 174 lifelong learning programmes and 65 PhD Programmes, 27 of which have been distinguished through Quality Awards. The UAB has a total of over 3,500 teaching and research staff, over 2,000 administrative staff and over 40,000 students....

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • Sí, puedes solicitar el certificado antes, durante, o al finalizar el curso.

  • Aunque el curso esté diseñado e impartido por la Universidad Autónoma de Barcelona, el certificado lo emite Coursera.

    ¿Qué información incluye?

    · el título del curso

    · la firma del (o de los) instructor(es)

    · el logo de la UAB

    · una url de verificación que permite a terceras personas comprobar la autenticidad del certificado

  • · créditos académicos de la UAB

    · la calificación final obtenida en el curso

    · tu foto del documento de identidad

    · las horas dedicadas al curso

    Recuerda que el certificado no se envía por correo postal o correo electrónico, sino que se trata de un PDF que puedes descargar e imprimir. También puedes compartirlo electrónicamente.

    Lamentablemente Coursera no puede emitir un certificado de curso con más información de la que ya incluye. Si deseas más información al respeto, por favor consulta las páginas de ayuda de Coursera.

  • No. El certificado confirma que el alumno ha superado el curso, pero no es un título oficial de la Universidad Autónoma de Barcelona.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.