Chevron Left
Natural Language Processing with Classification and Vector Spaces(으)로 돌아가기

deeplearning.ai의 Natural Language Processing with Classification and Vector Spaces 학습자 리뷰 및 피드백

4.6
별점
3,458개의 평가
700개의 리뷰

강좌 소개

In Course 1 of the Natural Language Processing Specialization, you will: a) Perform sentiment analysis of tweets using logistic regression and then naïve Bayes, b) Use vector space models to discover relationships between words and use PCA to reduce the dimensionality of the vector space and visualize those relationships, and c) Write a simple English to French translation algorithm using pre-computed word embeddings and locality-sensitive hashing to relate words via approximate k-nearest neighbor search. By the end of this Specialization, you will have designed NLP applications that perform question-answering and sentiment analysis, created tools to translate languages and summarize text, and even built a chatbot! This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper....

최상위 리뷰

MN

2021년 5월 24일

Great Course,\n\nVery few courses where Algorithms like Knn, Logistic Regression, Naives Baye are implemented right from Scratch . and also it gives you thorough understanding of numpy and matplot.lib

SK

2020년 7월 17일

One of the best introductions to the fundamentals of NLP. It's not just deep learning, fundamentals are really important to know how things evolved over time. Literally the best NLP introduction ever.

필터링 기준:

Natural Language Processing with Classification and Vector Spaces의 713개 리뷰 중 26~50

교육 기관: Md. O F

2020년 7월 13일

The instructors left out too much on the intuition part.

교육 기관: Mounir H

2020년 9월 14일

Well paced and easy to follow.

There are some typos here and there (so the course might need some more polish on that end) but, apart from that, it's accessible and puts the focus on understanding the concepts rather on coding contrary to what I have read in another review.

You could follow the course even with no prior experience in Python.

If you take the course, don't skip the ungraded assignements, they are an integral part of it and provide more detailed explanations of what has been taught in the lecture videos.

Thanks to the team and good luck all.

교육 기관: mayur n

2021년 5월 25일

Great Course,

Very few courses where Algorithms like Knn, Logistic Regression, Naives Baye are implemented right from Scratch . and also it gives you thorough understanding of numpy and matplot.lib

교육 기관: Dustin Z

2020년 8월 1일

A really great course in NLP. They do a really good job balancing beginner and intermediate skill levels. This is a good introduction to NLP and machine learning in general. Really fun course!

교육 기관: Paul S

2020년 7월 9일

Fun, interesting and useful course. A couple of road bumps in the assignments made me waste a lot of time, but the forums and Slack channels were lifesavers in those situations.

교육 기관: Carlos O

2020년 6월 28일

I has the right mix of challenge and support. I gained new insights into topics that I thought I already understood well. Great introductory course.

교육 기관: alfredo m

2020년 6월 25일

Very helping in understanding the maths behind NLP for classification methods and I can see these things more intuitively from now on

교육 기관: Dave W B

2020년 6월 22일

Good job! The course material is easy to follow and the links to related material is appreciated.

교육 기관: Aleksander M

2020년 6월 22일

Great course, very good materials and explanations! ❤

교육 기관: Robert S

2020년 7월 24일

General Comments on Course 1All of the linguistic and semantic knowledge that we were mining in Course 1 was encoded in the vectors. The coding was just using statistical methods to draw linguistic inferences from these vectors. I find it unfortunate that we didn't have an opportunity to learn how the vectors themselves are made (or did I miss something?), but merely got them out of a can from Google.It took me a while to figure out that the homeworks are graded by an AI, not a TA, and that one can submit the homework assignments numerous times until getting the grade you want. Given the large number of students enrolled, I can understand that hand grading would not be an option. It would probably be helpful to explain this to newcomers like me.I liked the way the assignments are structured. the fill-in-the-blanks approach, followed by some sort of numerical unit test to let us know if our solution was correct is good pedagogy (androgogy?). My only criticism is that sometimes the unit tests are not very sensitive to common coding errors. But now I know that we always have the option of running our assignment through the autograder for more complete feedback.The autograder is often overly prescriptive. For example, "Function 'np.sign or np.heaviside' not found in Code Cell UNQ_C17." Python is a rich language and there are many ways to code C17 without using those particular functions. The goal should be to get students to solve a problem creatively -- not to follow a particular path.I found the week 4 assignment a real bear -- too long (22 completion sections) in comparison with the others. I'm sure it was difficult for whoever codes the autograder as well. They need to do some more code checking. In UNQ__C8 we were asked to use the pre-coded cosine_similarity function. Initially this was returning the cosine difference, which is quite the opposite. In the middle of last week, after I and others reported the error, it was corrected but this seems to have created a cascade of other errors. For example, in cell UNQ_C9, We are toldExpected Output:[[9 9 9] [1 0 5] [2 0 1]] Which is wrong. A look at the vectors is enough to see that (2,0,1) is closest to (1,0,1) by cosine similarity. I believe the autograder makes the same confusion. I mention this not to criticize our hard-working programmer, who is otherwise doing an excellent job, but so that the errors get fixed ;-) (edited)

교육 기관: Justin M

2020년 7월 17일

A high quality course overall! It helped me understand both theory and the programming mechanics of implementation. The Jupyter notebook guidance was detailed and well-organized!

Enhancement opportunities:

I felt the PCA lectures and PCA function implementation were a bit muddled. Consider illustrating the geometric intuition behind PCA: when 2-D data points are projected onto a line, the "best" line maximizes variance along the line while minimizing the reconstruction error of the data points.

The final notebook assignment is long and contains a large number of function and global variables. It is a lot to digest. Maybe enhance it with a takeaway video that unlocks after the assignment is passed. The video will visually recap what was accomplished by showing the start-to-end pipeline.

The course is a great value for the price!

교육 기관: James P

2020년 7월 24일

I learnt a lot on this course - the material about matrices and matrix operations was all totally new to me, so it took a while to get my head around (more background reading links here would've been helpful). Also, with some of the grading cells in the assignments it was difficult to understand why the answer was being marked as incorrect (examples being UNQ_C11, UNQ_C22 in the week 4 assignment).

교육 기관: Chris B

2020년 11월 15일

You must have a very strong knowledge of python to do this course. Concepts are explained well, but work submitted often goes beyond explanation. I found I understood the concepts but had difficulties with the intricacies of pyhon, numpy and various syntax.

교육 기관: GARVIT K

2020년 6월 26일

The first three weeks were taught really well. But I found the explanations of LSH and Hashtables rushed and they could have given more time to explain it. The assignment in the 4th week was very tough

교육 기관: Simon T

2020년 7월 5일

Ok but coding exercises could have been better structured (e.g. less long functions without easy to run test cases). The exercises could also have been a little more stimulating.

교육 기관: Demetrio R L

2020년 7월 25일

Great course, with interesting examples. However, I am dissapointed with the automated grading system, which wrongly penalized answers and impacted final grade.

교육 기관: Dijo X

2020년 9월 1일

Honestly speaking the video materials are not at all sufficient to understand the concepts. I have to watch other YouTube videos to understand concepts.

교육 기관: Robert H

2020년 6월 28일

Very good course from deeplearning.ai team , you will need some background in ML and Python. The support on the coursera forums could be better.

교육 기관: Artem R

2020년 7월 2일

I've got strange feelings about this course. If we are talking about courses from deeplearning.ai, it all started with Tensorflow in Practice specialization.

This course have should have 2 weeks or maybe one, because everything can be accomplished in a few days.

It has very small amount of interesting content.

It is repetitive (some parts of assignments are copied from Deep Learning specialization assignments).

The video lessons are strange - it seems that two instructors recorded same videos and only beginning and ending from Łukasz Kaiser's videos got to the course (which is not fair).

Some procedures don't have description for function's arguments. Some procedures don't have testing function - you don't know if it works or not.

This course should be a part of another course, because it doesn't seem as a complete course. It feels like it doesn't completed, like it is a draft for a full course.

I believe that others courses from this specialization will be better. If you know Russian, I suggest you to take course about NLP on Stepik platform https://stepik.org/course/54098/syllabus. It is much better.

교육 기관: Mike D

2020년 7월 30일

Academically, a step down from deeplearning.ai's previous courses. In terms of technical quality, the media could use improvement, particularly in normalizing audio levels and ensuring a perfect acoustic setup for all lecturers. Coursera should hire some acoustics and motion pictures experts and task them with improving "production values" (look it up).

Shortcomings notwithstanding, this is still a great class and a "must take" for any aspiring NLP expert.

교육 기관: Евгений Ц

2021년 2월 8일

HW check is just awful. I need to use exact these functions (i.e. squeeze instead of ravel).

Moreover, one could complete homeworks without referring to the lectures at all -- zero challenges met.

The last HW is not balanced (11 tasks -- too much compared to the rest).

I would suggest the course makers to redesign the homeworks dramatically.

교육 기관: Amir M S

2020년 7월 16일

Thank you first of all. I think the length of videos could be longer for better understanding of concepts. Specifically, I think in Week 4 there are a lot of concepts like ( Locality Sensitive Hashing) that could be better explained.

교육 기관: Nirjhar D

2020년 10월 17일

The assignments lacked clarity. The huge number of variables used for seemingly trivial intermediatory task is really confusing. Also, the assignment documentation and instructions need to be enhanced,

교육 기관: Brooke F

2020년 8월 16일

The exercises and assignments seemed to place more emphasis on the coding and less on the theory and study of natural language processing per se, imho.

교육 기관: Gabriel T P C

2020년 8월 3일

T

h

e

c

o

n

t

e

n

t

s

a

r

e

a shallow, the lessons doesn't go into details. The teacher only shows what's needed for understanding the week exercises. I won't dare say it's even basic level.