About this Course
최근 조회 81,924

학위 취득의 첫걸음을 내디뎌 보세요.

Illinois MCS in Data Science 학위에서 강의, 강좌 읽기 자료, 자가 맞춤 과제를 체험해 보세요.

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

초급 단계

완료하는 데 약 38시간 필요

권장: 5 weeks of study, 5 - 10 hours/week...

영어

자막: 영어

귀하가 습득할 기술

Distributed AlgorithmDistributed ComputingC++Cloud Computing

학위 취득의 첫걸음을 내디뎌 보세요.

Illinois MCS in Data Science 학위에서 강의, 강좌 읽기 자료, 자가 맞춤 과제를 체험해 보세요.

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

초급 단계

완료하는 데 약 38시간 필요

권장: 5 weeks of study, 5 - 10 hours/week...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 6시간 필요

Week 1: Orientation, Introduction to Clouds, MapReduce

This course is oriented towards learners with similar backgrounds as juniors and seniors in a CS undergraduate curriculum. Since learners come from various backgrounds, it is critical you view this lecture AND pass the prerequisite test. This will ensure you have many of the assumed prerequisite pieces of knowledge required to enjoy this course.

...
16 videos (Total 155 min), 8 readings, 3 quizzes
16개의 동영상
Orientation Towards Cloud Computing Concepts: Some Basic Computer Science Fundamentals23m
Week 1 Introduction1m
1.1. Why Clouds?6m
1.2. What is a Cloud?5m
1.3. Introduction to Clouds: History7m
1.4. Introduction to Clouds: What's New in Today's Clouds7m
1.5. Introduction to Clouds: New Aspects of Clouds8m
1.6. Introduction to Clouds: Economics of Clouds7m
2.1. A cloud IS a distributed system5m
2.2. What is a distributed system?16m
3.1. MapReduce Paradigm14m
3.2. MapReduce Examples10m
3.3. MapReduce Scheduling12m
3.4. MapReduce Fault-Tolerance8m
Interview with Sumeet Singh16m
8개의 읽기 자료
Orientation Overview10m
Syllabus10m
About the Discussion Forums10m
Instructions for Taking the Prerequisite Quiz10m
Course Learning Community and Social Media10m
Week 1 Overview10m
Homework 1 Instructions10m
Programming Assignment Instructions10m
3개 연습문제
Orientation Quiz10m
Prerequisite Quiz50m
Homework 114m
2
완료하는 데 3시간 필요

Week 2: Gossip, Membership, and Grids

Lesson 1: This module teaches how the multicast problem is solved by using epidemic/gossip protocols. It also teaches analysis of such protocols. Lesson 2: This module covers the design of failure detectors, a key component in any distributed system. Membership protocols, which use failure detectors as components, are also covered. Lesson 3: This module covers Grid computing, an important precursor to cloud computing.

...
14 videos (Total 122 min), 2 readings, 1 quiz
14개의 동영상
1.1. Multicast Problem9m
1.2. The Gossip Protocol5m
1.3. Gossip Analysis15m
1.4. Gossip Implementations4m
2.1. What is Group Membership List?8m
2.2. Failure Detectors9m
2.3. Gossip-Style Membership7m
2.4. Which is the best failure detector?4m
2.5. Another Probabilistic Failure Detector9m
2.6. Dissemination and suspicion8m
3.1. Grid Applications6m
3.2. Grid Infrastucture11m
Interview with William Gropp20m
2개의 읽기 자료
Week 2 Overview10m
Homework 2 Instructions10m
1개 연습문제
Homework 212m
3
완료하는 데 3시간 필요

Week 3: P2P Systems

P2P systems: This module teaches the detailed design of two classes of peer to peer systems: (a) popular ones including Napster, Gnutella, FastTrack, and BitTorrent; and (b) efficient ones including distributed hash tables (Chord, Pastry, and Kelips). Besides focusing on design, the module also analyzes these systems in detail.

...
10 videos (Total 105 min), 2 readings, 1 quiz
10개의 동영상
1. P2P Systems Introduction5m
2. Napster7m
3. Gnutella20m
4. FastTrack and BitTorrent7m
5. Chord22m
6. Failures in Chord14m
7. Pastry6m
8. Kelips10m
Blue Waters Supercomputer9m
2개의 읽기 자료
Week 3 Overview10m
Homework 3 Instructions10m
1개 연습문제
Homework 328m
4
완료하는 데 4시간 필요

Week 4: Key-Value Stores, Time, and Ordering

Lesson 1: This module motivates and teaches the design of key-value/NoSQL storage/database systems. We cover the design of two major industry systems: Apache Cassandra and HBase. We also cover the famous CAP theorem. Lesson 2: Distributed systems are asynchronous, which makes clocks at different machines hard to synchronize. This module first covers various clock synchronization algorithms, and then covers ways of tagging events with causal timestamps that avoid synchronizing clocks. These classical algorithms were invented decades ago, yet are used widely in today’s cloud systems.

...
12 videos (Total 147 min), 3 readings, 1 quiz
12개의 동영상
1.1. Why Key-Value/NOSQL?15m
1.2. Cassandra27m
1.3. The Mystery of X-The Cap Theorem19m
1.4. The Consistency Spectrum9m
1.5. HBase10m
2.1. Introduction and Basics10m
2.2. Cristian's Algorithm5m
2.3. NTP4m
2.4. Lamport Timestamps14m
2.5. Vector Clocks12m
Interview with Marcos Aguilera14m
3개의 읽기 자료
Week 4 Overview10m
Optional: Lamport Timestamps (Ukulele Version)10m
Homework 4 Instructions10m
1개 연습문제
Homework 450m
5
완료하는 데 8시간 필요

Week 5: Classical Distributed Algorithms

Lesson 1: This module covers how to calculate a distributed snapshot, leveraging causality again to circumvent the synchronization problem. Lesson 2: This lecture teaches how to order multicasts in any distributed system. Algorithms for assigning timestamp tags to multicasts using various flavors of ordering – FIFO, Causal, and Total – are covered. The module also covers virtual synchrony, a paradigm that combines reliable multicasts with membership views. Lesson 3: Consensus is one of the most important problems in a distributed system, enabling multiple machines to agree. This module uses Paxos, one of the most popular consensus solutions used in the industry today. Paxos is not perfect because consensus cannot be solved completely – an optional lecture presents the famous FLP proof of impossibility of consensus.

...
16 videos (Total 156 min), 3 readings, 3 quizzes
16개의 동영상
1.1. What is Global Snapshot?7m
1.2. Global Snapshot Algorithm10m
1.3. Consistent Cuts6m
1.4. Safety and Liveness7m
2.1. Multicast Ordering16m
2.2. Implementing Multicast Ordering 19m
2.3. Implementing Multicast Ordering 27m
2.4. Reliable Multicast5m
2.5. Virtual Synchrony11m
3.1. The Consensus Problem12m
3.2. Consensus In Synchronous Systems8m
3.3. Paxos, Simply13m
3.4. The FLP Proof [OPTIONAL]20m
Interview with Tushar Chandra13m
Conclusion to Cloud Computing Concepts, Part 13m
3개의 읽기 자료
Week 5 Overview10m
Homework 5 Instructions10m
Final Exam Instructions10m
2개 연습문제
Homework 530m
Final Exam1h
4.5
171개의 리뷰Chevron Right

20%

이 강좌를 수료한 후 새로운 경력 시작하기

14%

이 강좌를 통해 확실한 경력상 이점 얻기

Cloud Computing Concepts, Part 1의 최상위 리뷰

대학: MRJul 16th 2017

Great course, I would recommend to everyone who wants to understand the basics of cloud computing. The course material is excellent, the instructor Indy is phenomenal and the exams are marvelous.

대학: DPOct 7th 2016

This instructor is fantastic. He is exceptionally thorough and his delivery is very good as well. This is a course definitely worth taking if you are interested in learning more about the cloud.

강사

Avatar

Indranil Gupta

Professor
Department of Computer Science

다른 사람보다 먼저 시작해 보세요.

이 강좌은(는) 일리노이대학교 어버너-섐페인캠퍼스의 100% 온라인 Master in Computer Science 중 일부입니다. 지금 바로 공개 강좌 또는 전문 분야를 시작하여 iMBA 교수진으로 구성된 강좌를 시청하고 자기 주도 과제를 완료해 보세요. 강좌를 완료할 때마다 이력서와 LinkedIn에 추가할 수 있는 수료증을 받습니다. 전체 프로그램을 신청하고 수료하면 귀하의 강좌가 학위 취득에 반영됩니다.

일리노이대학교 어버너-섐페인캠퍼스 정보

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

클라우드 컴퓨팅 전문 분야 정보

The Cloud Computing Specialization takes you on a tour through cloud computing systems. We start in in the middle layer with Cloud Computing Concepts covering core distributed systems concepts used inside clouds, move to the upper layer of Cloud Applications and finally to the lower layer of Cloud Networking. We conclude with a project that allows you to apply the skills you've learned throughout the courses. The first four courses in this Specialization form the lecture component of courses in our online Master of Computer Science Degree in Data Science. You can apply to the degree program either before or after you begin the Specialization....
클라우드 컴퓨팅

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.