La computación evolutiva (evolutionary computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas, como la ingeniería, economía, química, medicina y, porque no, las artes. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación, al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población.
제공자:
이 강좌에 대하여
제공자:

멕시코 국립자치 대학교
La Universidad Nacional Autónoma de México fue fundada el 21 de septiembre de 1551 con el nombre de la Real y Pontificia Universidad de México. Es la más grande e importante universidad de México e Iberoamérica. Tiene como propósito primordial estar al servicio del país y de la humanidad, formar profesionistas útiles a la sociedad, organizar y realizar investigaciones, principalmente acerca de las condiciones y problemas nacionales, y extender con la mayor amplitud posible, los beneficios de la cultura.
강의 계획표 - 이 강좌에서 배울 내용
Introducción a la computación evolutiva
En este módulo conocerás cómo y por qué funcionan los algoritmos evolutivos, para resolver problemas de optimización y búsqueda.
Principios de operación de un algoritmo genético
En este módulo aprenderás a formular, plantear e identificar las variables de decisión de un problema dado (no importando el dominio), para poderlo resolver con el uso de un algoritmo evolutivo.
Implementación de un algoritmo genético básico
En este módulo identificarás cada una de las partes que conforman un algoritmo evolutivo, lo cual tendrá como consecuencia su implementación adecuada.
Aplicaciones de algoritmos genéticos y otras técnicas evolutivas
En este módulo aprenderás que los algoritmos evolutivos no son las únicas metaheurísticas para resolver problemas de optimización y búsqueda, sino que existen otras propuestas, como los algoritmos de optimización por cúmulo de partículas y la evolución diferencial.
자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.