About this Course
최근 조회 35,936

다음 전문 분야의 6개 강좌 중 5번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 26시간 필요

권장: 10 hours/week...

러시아어

자막: 러시아어

귀하가 습득할 기술

Data ScienceTime SeriesSentiment AnalysisRecommender Systems

다음 전문 분야의 6개 강좌 중 5번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 26시간 필요

권장: 10 hours/week...

러시아어

자막: 러시아어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 5시간 필요

Бизнес-задачи

19개 동영상 (총 152분), 6 readings, 7 quizzes
19개의 동영상
Как устроена специализация, и зачем ее проходить3m
МФТИ1m
Временные ряды9m
Автокорреляция6m
Стационарность6m
ARMA5m
ARIMA5m
Выбор ARIMA и прогнозирование10m
Анализ остатков8m
Пример построения прогноза11m
Регрессионный подход к прогнозированию8m
Анализ поведения пользователей8m
Аудиторные метрики: привлечение7m
Аудиторные метрики: активность9m
Аудиторные метрики: монетизация6m
Аудиторные метрики: удержание3m
Прогнозирование оттока пользователей: Постановка задачи18m
Прогнозирование оттока пользователей: Построение и оценка модели16m
6개의 읽기 자료
МФТИ10m
Forum&Chat10m
Пример построения прогноза [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
6개 연습문제
Автокорреляция и стационарность10m
p, q, P, Q18m
Прогнозирование временных рядов18m
Аудиторные показатели: привлечение и активность8m
Аудиторные показатели: монетизация и удержание6m
Анализ поведения пользователей10m
2
완료하는 데 6시간 필요

Анализ медиа

11개 동영상 (총 106분), 7 readings, 3 quizzes
11개의 동영상
Задачи компьютерного зрения5m
"Низкоуровневое" зрение14m
Линейная фильтрация изображений4m
Классификация изображений9m
Задача классификации изображений на практике14m
Распознавание лиц17m
Детекция объектов13m
Стилизация изображений3m
Распознавание китов5m
Сбор больших коллекций изображений10m
7개의 읽기 자료
Дополнительные материалы10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
2개 연습문제
Компьютерное зрение16m
Практические задачи компьютерного зрения14m
3
완료하는 데 6시간 필요

Анализ текстов

13개 동영상 (총 80분), 6 readings, 5 quizzes
13개의 동영상
Предобработка текста6m
Извлечение признаков из текста5m
Извлечение признаков из текста - 25m
Обучение моделей на текстах3m
word2vec5m
Рекуррентные сети7m
Выделение коллокаций5m
Языковые модели4m
Анализ тональности текста13m
Анализ тональности отзывов4m
Анализ тональности отзывов: продолжение5m
Аннотирование7m
6개의 읽기 자료
Слайды к лекциям10m
Конспекты к лекциям10m
Слайды к лекциям10m
Конспекты к лекциям10m
Анализ тональности отзывов [ipython notebook]10m
Слайды к лекциям10m
4개 연습문제
Первичная обработка текстов6m
Текстовые данные и работа с ними6m
word2vec и рекуррентные сети6m
Примеры задач анализа текстов6m
4
완료하는 데 5시간 필요

Рекомендации и ранжирование

10개 동영상 (총 57분), 5 readings, 4 quizzes
10개의 동영상
Метрики качества ранжирования6m
Методы ранжирования4m
Рекомендательные системы4m
kNN и матричные разложения2m
Подходы к построению рекомендательных систем11m
Гибридные рекомендательные системы6m
Оффлайн оценка качества3m
Онлайновая оценка качества5m
Максимизация прибыли магазина7m
5개의 읽기 자료
Слайды к лекциям10m
Конспекты к лекциям10m
Слайды к лекциям10m
Финальные титры10m
Стань ментором специализации10m
3개 연습문제
Ранжирование6m
Рекомендательные системы-16m
Рекомендательные системы-210m
4.4
92개의 리뷰Chevron Right

73%

이 강좌를 수료한 후 새로운 경력 시작하기

79%

이 강좌를 통해 확실한 경력상 이점 얻기

40%

급여 인상 또는 승진하기

Прикладные задачи анализа данных의 최상위 리뷰

대학: PKMay 24th 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

대학: ISJan 21st 2019

Замечательный курс, полный примеров из реальной жизни для получения опыта. Очень полезные и понятные лекции, конспекты. Очень рад, что смог пройти этот курс.

강사

Avatar

Антон Слесарев

руководитель группы распознавания образов Яндекс

모스크바 물리 기술원 정보

Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой. Основой образования в МФТИ является уникальная «система Физтеха», сформулированная Петром Капицей: кропотливый отбор одаренных и склонных к творческой работе абитуриентов; участие в обучении ведущих научных работников; индивидуальный подход к отдельным студентам с целью развития их творческих задатков; воспитание с первых шагов в атмосфере технических исследований и конструктивного творчества с использованием потенциала лучших лабораторий страны. Среди выпускников МФТИ — нобелевские лауреаты Андрей Гейм и Константин Новоселов, основатель компании ABBYY Давид Ян, один из авторов архитектурных принципов построения вычислительных комплексов Борис Бабаян и др....

Yandex 정보

Yandex is a technology company that builds intelligent products and services powered by machine learning. Our goal is to help consumers and businesses better navigate the online and offline world....

Машинное обучение и анализ данных 전문 분야 정보

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.