이 강좌에 대하여

최근 조회 46,854

학습자 경력 결과

73%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

79%

가 이 강좌를 통해 확실한 경력상 이점을 얻음

40%

가 급여 인상 또는 승진 성취
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 6개 강좌 중 5번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 23시간 필요
러시아어
자막: 러시아어

귀하가 습득할 기술

Data ScienceTime SeriesSentiment AnalysisRecommender Systems

학습자 경력 결과

73%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

79%

가 이 강좌를 통해 확실한 경력상 이점을 얻음

40%

가 급여 인상 또는 승진 성취
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 6개 강좌 중 5번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 23시간 필요
러시아어
자막: 러시아어

제공자:

모스크바 물리 기술원 로고

모스크바 물리 기술원

Yandex 로고

Yandex

E-Learning Development Fund 로고

E-Learning Development Fund

강의 계획 - 이 강좌에서 배울 내용

콘텐츠 평가Thumbs Up82%(6,606개의 평가)Info
1

1

완료하는 데 5시간 필요

Бизнес-задачи

완료하는 데 5시간 필요
19개 동영상 (총 152분), 6 개의 읽기 자료, 7 개의 테스트
19개의 동영상
Как устроена специализация, и зачем ее проходить3m
МФТИ1m
Временные ряды9m
Автокорреляция6m
Стационарность6m
ARMA5m
ARIMA5m
Выбор ARIMA и прогнозирование10m
Анализ остатков8m
Пример построения прогноза11m
Регрессионный подход к прогнозированию8m
Анализ поведения пользователей8m
Аудиторные метрики: привлечение7m
Аудиторные метрики: активность9m
Аудиторные метрики: монетизация6m
Аудиторные метрики: удержание3m
Прогнозирование оттока пользователей: Постановка задачи18m
Прогнозирование оттока пользователей: Построение и оценка модели16m
6개의 읽기 자료
МФТИ10m
Forum&Chat10m
Пример построения прогноза [ipython notebook]10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
6개 연습문제
Автокорреляция и стационарность10m
p, q, P, Q18m
Прогнозирование временных рядов18m
Аудиторные показатели: привлечение и активность8m
Аудиторные показатели: монетизация и удержание6m
Анализ поведения пользователей10m
2

2

완료하는 데 6시간 필요

Анализ медиа

완료하는 데 6시간 필요
11개 동영상 (총 106분), 7 개의 읽기 자료, 3 개의 테스트
11개의 동영상
Задачи компьютерного зрения5m
"Низкоуровневое" зрение14m
Линейная фильтрация изображений4m
Классификация изображений9m
Задача классификации изображений на практике14m
Распознавание лиц17m
Детекция объектов13m
Стилизация изображений3m
Распознавание китов5m
Сбор больших коллекций изображений10m
7개의 읽기 자료
Дополнительные материалы10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
Слайды к лекциям10m
Конспект10m
2개 연습문제
Компьютерное зрение16m
Практические задачи компьютерного зрения14m
3

3

완료하는 데 6시간 필요

Анализ текстов

완료하는 데 6시간 필요
13개 동영상 (총 80분), 6 개의 읽기 자료, 5 개의 테스트
13개의 동영상
Предобработка текста6m
Извлечение признаков из текста5m
Извлечение признаков из текста - 25m
Обучение моделей на текстах3m
word2vec5m
Рекуррентные сети7m
Выделение коллокаций5m
Языковые модели4m
Анализ тональности текста13m
Анализ тональности отзывов4m
Анализ тональности отзывов: продолжение5m
Аннотирование7m
6개의 읽기 자료
Слайды к лекциям10m
Конспекты к лекциям10m
Слайды к лекциям10m
Конспекты к лекциям10m
Анализ тональности отзывов [ipython notebook]10m
Слайды к лекциям10m
4개 연습문제
Первичная обработка текстов6m
Текстовые данные и работа с ними6m
word2vec и рекуррентные сети6m
Примеры задач анализа текстов6m
4

4

완료하는 데 5시간 필요

Рекомендации и ранжирование

완료하는 데 5시간 필요
10개 동영상 (총 57분), 5 개의 읽기 자료, 4 개의 테스트
10개의 동영상
Метрики качества ранжирования6m
Методы ранжирования4m
Рекомендательные системы4m
kNN и матричные разложения2m
Подходы к построению рекомендательных систем11m
Гибридные рекомендательные системы6m
Оффлайн оценка качества3m
Онлайновая оценка качества5m
Максимизация прибыли магазина7m
5개의 읽기 자료
Слайды к лекциям10m
Конспекты к лекциям10m
Слайды к лекциям10m
Финальные титры10m
Стань ментором специализации10m
3개 연습문제
Ранжирование6m
Рекомендательные системы-16m
Рекомендательные системы-210m

검토

ПРИКЛАДНЫЕ ЗАДАЧИ АНАЛИЗА ДАННЫХ의 최상위 리뷰

모든 리뷰 보기

Машинное обучение и анализ данных 특화 과정 정보

Мы покажем, как проходит полный цикл анализа, от сбора данных до выбора оптимального решения и оценки его качества. Вы научитесь пользоваться современными аналитическими инструментами и адаптировать их под особенности конкретных задач. В рамках специализации вы освоите основные темы, необходимые в работе с большим массивом данных, в т.ч. современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, базовая фундаментальная математика, основы программирования на Python. Мы разберём, как построить рекомендательную систему, оценить эмоциональную окраску текста, спрогнозировать спрос на товар, оценить вероятность клика по рекламе и т.д. В финале вам потребуется выполнить проект собственной системы, решающей любую актуальную для бизнеса задачу. Результатом будет наглядная работающая модель, которую вы сможете использовать в вашей повседневной работе или продемонстрировать на собеседовании. Все, прошедшие специализацию, могут принять участие в Программе трудоустройства. Если вы заинтересованы в новых проектах, новых перспективах и возможностях - пройдите обучение по Специализации и подайте заявку....
Машинное обучение и анализ данных

자주 묻는 질문

  • 강의 및 과제 이용 권한은 등록 유형에 따라 다릅니다. 청강 모드로 강좌를 수강하면 대부분의 강좌 자료를 무료로 볼 수 있습니다. 채점된 과제를 이용하고 수료증을 받으려면 청강 도중 또는 이후에 수료증 경험을 구매해야 합니다. 청강 옵션이 표시되지 않는 경우:

    • 강좌에서 청강 옵션을 제공하지 않을 수 있습니다. 대신 무료 평가판을 사용하거나 재정 지원을 신청할 수 있습니다.
  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 이 강좌는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 강좌 수료증을 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요. Coursera의 온라인 학위Mastertrack™ 수료증은 대학 학점을 취득할 기회를 제공합니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.