Chevron Left
Data Manipulation at Scale: Systems and Algorithms(으)로 돌아가기

워싱턴 대학교의 Data Manipulation at Scale: Systems and Algorithms 학습자 리뷰 및 피드백

4.3
697개의 평가
152개의 리뷰

강좌 소개

Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams...

최상위 리뷰

HA

Jan 11, 2016

Great course that strikes a balance between teaching general principles and concepts, and providing hands-on technical skills and practice.\n\nThe lessons are well designed and clearly conveyed.

SL

May 28, 2016

I like the breadth of coverage of this class. Each of the exercise is a gem in that I get to learn something new also. I would highly recommend this even to experience practitioner also.

필터링 기준:

Data Manipulation at Scale: Systems and Algorithms의 148개 리뷰 중 76~100

교육 기관: Alari

Dec 03, 2015

Very good course, but lectures could be more tuned onto the home assignments. A lot of independent work for me at least. Teacher is very good.

교육 기관: Jeffrey L

Jan 09, 2016

Very good course! Interesting problem sets.

교육 기관: Dario P C

Mar 25, 2016

Very usefull course. Great!

교육 기관: Andrew T

Dec 02, 2015

The lecturer is very, very knowledgable and seems to explain the landscape of topics both from a grand perspective and deep knowledge.

Though there are a wide variety of programming exercise,I would prefer some more in-depth assignments (as is usually the case with me and Coursera).

교육 기관: Jiancheng

Dec 06, 2015

Great assignment and course design! Not easy for me.

교육 기관: Aayush M

Oct 28, 2015

I feel that there should be more assignments to make the course interesting. The last part just briefly explained about different database types but it also focused two lectures on Pig. There could be an assignment to make the lectures more meaningful or perhaps, a quiz. Otherwise, last week is too much information to grasp at once.

교육 기관: Jan Z

Nov 21, 2016

The course was very good - especially the map-reduce part I found very well explained and inspirational. The problem sets were thought-provoking and really taught me a lot.

Two things that could be improved:

1) The problem sets are really nice (again, map-reduce is the best one), but there are quite a few errors in the description, a lot of information is dated (e.g. in ps.1 the twitter link is old), and working with the grader can be very clumsy. See Machine Learning by Andrew Ng to see how to design perfect, easy to operate and submit problem sets. Perhaps work with PyCharm creators?

2) The second to last part was a bit lacking - it was basically skimming though all different types of databases, which didn't make me feel like I really acquired any skill. Because of how little time was spent on each database type and there were so many, I don't really remember much of it now (hardly anything to be honest).

교육 기관: Tony G

May 13, 2016

covers a lot of ground quickly, but you still get a good understanding of the underlying theory or technologies

교육 기관: Krzysztof L

Jul 27, 2016

Good introduction to Big Data systems.

교육 기관: Joris D

May 21, 2017

The course gives a good introduction into handling large amounts of data, the problems it poses, and an overview of the available solutions. Towards the end of the course, it started to feel a bit less polished and more rushed, though

교육 기관: Xuefei J

Oct 27, 2015

it is very useful but easy enough

교육 기관: Abhijit S

Oct 21, 2015

Good Course for beginner in Data Scientist field. I recommend this course

교육 기관: Damien L

Nov 16, 2017

Excellent course. I just sad about the absence of any assignment or even quiz in Week 4..

교육 기관: Annavajjala S P A S

Mar 13, 2017

The contents of the course were good enough. The assignments, though simple required some work in terms of understanding the kind of data that you are dealing with, which is important. Although, a lot of content has been covered, it was arranged in a logical manner.

교육 기관: Sreeparna M

Sep 18, 2017

The course is good. It definitely gives a broad overview of the topics. It's presented in an interesting manner and I would definitely go in-depth about these topics. Although, it would have been more helpful had there been more graded quizzes and assignments.

교육 기관: Chuck C

Jun 26, 2017

Great content. The questions are academic and sometimes hard to understand the desired outcome

교육 기관: Mandar B

Mar 29, 2017

Course gives you good overview on different important data science technologies. Hands on labs are important to get the grip on concepts.

교육 기관: Mariano S B

Nov 19, 2016

Good

교육 기관: Gregory T

Nov 29, 2015

Interesting intro to some powerful ideas

교육 기관: Wesley E

Oct 04, 2016

Definitely need some background in R or Python and the lectures are a bit old. Seem to be from around 2013 when this first came out but most of the info is still relevant.

교육 기관: Dylan T

May 06, 2017

The course is interesting and well made. Compared the the other two, I found the first assignment quite difficult and required quite a bit of time to complete. Introducing SQL through relational algebra seemed relevant to me, and made the formulation of SQL queries very natural. The section about map reduce may appear difficult to process first but as the student has to go through (and beyond in one case) the examples presented in the course. In the end, I found the assignment very useful in putting thing in place. I received full grade but still have to go through week 4, maybe a small quiz in the end to test our understanding of the different concept would have been handy.

교육 기관: MICHEL S

Jan 05, 2016

Very broad and instructive course with a good level of theory, many practical examples. Good teaching.

Some nice assignments but a lake of assignement for the 4th week

I recommand this course

교육 기관: Timothy R

Jun 22, 2017

Very good introduction to relational algebra and map reduce. Also helped scratch up on some python and SQL.

교육 기관: xia b

Feb 12, 2017

recommend to improve assignment details

교육 기관: Jim S

Aug 10, 2017

The theory and relational algebra is a little heavy for me (I am very much a practitioner). That said, Prof Howe is *excellent* in is presentation. Very clear and easy to follow. Sometimes beats a dead horse (Map Reduce) and as a result, you definitely know what he's getting after!