About this Course
최근 조회 70,622

다음 전문 분야의 6개 강좌 중 4번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 16시간 필요


자막: 영어, 한국어
Course을(를) 수강하는 학습자
  • Data Scientists
  • Data Analysts
  • Data Engineers
  • Research Assistants
  • Researchers

귀하가 습득할 기술

StreamsSequential Pattern MiningData Mining AlgorithmsData Mining
Course을(를) 수강하는 학습자
  • Data Scientists
  • Data Analysts
  • Data Engineers
  • Research Assistants
  • Researchers

다음 전문 분야의 6개 강좌 중 4번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 16시간 필요


자막: 영어, 한국어

강의 계획 - 이 강좌에서 배울 내용

완료하는 데 1시간 필요

Course Orientation

1개 동영상 (총 7분), 3 readings, 1 quiz
1개의 동영상
3개의 읽기 자료
About the Discussion Forums10m
Social Media10m
1개 연습문제
Orientation Quiz10m
완료하는 데 4시간 필요

Module 1

9개 동영상 (총 49분), 2 readings, 3 quizzes
9개의 동영상
1.2. Frequent Patterns and Association Rules5m
1.3. Compressed Representation: Closed Patterns and Max-Patterns7m
2.1. The Downward Closure Property of Frequent Patterns3m
2.2. The Apriori Algorithm6m
2.3. Extensions or Improvements of Apriori7m
2.4. Mining Frequent Patterns by Exploring Vertical Data Format3m
2.5. FPGrowth: A Pattern Growth Approach8m
2.6. Mining Closed Patterns3m
2개의 읽기 자료
Lesson 1 Overview10m
Lesson 2 Overview10m
2개 연습문제
Lesson 1 Quiz10m
Lesson 2 Quiz8m
완료하는 데 1시간 필요

Module 2

9개 동영상 (총 47분), 2 readings, 2 quizzes
9개의 동영상
3.2. Interestingness Measures: Lift and χ25m
3.3. Null Invariance Measures5m
3.4. Comparison of Null-Invariant Measures7m
4.1. Mining Multi-Level Associations4m
4.2. Mining Multi-Dimensional Associations2m
4.3. Mining Quantitative Associations4m
4.4. Mining Negative Correlations6m
4.5. Mining Compressed Patterns7m
2개의 읽기 자료
Lesson 3 Overview10m
Lesson 4 Overview10m
2개 연습문제
Lesson 3 Quiz10m
Lesson 4 Quiz8m
완료하는 데 2시간 필요

Module 3

10개 동영상 (총 56분), 2 readings, 2 quizzes
10개의 동영상
5.2. GSP: Apriori-Based Sequential Pattern Mining3m
5.3. SPADE—Sequential Pattern Mining in Vertical Data Format3m
5.4. PrefixSpan—Sequential Pattern Mining by Pattern-Growth4m
5.5. CloSpan—Mining Closed Sequential Patterns3m
6.1. Mining Spatial Associations4m
6.2. Mining Spatial Colocation Patterns9m
6.3. Mining and Aggregating Patterns over Multiple Trajectories9m
6.4. Mining Semantics-Rich Movement Patterns3m
6.5. Mining Periodic Movement Patterns7m
2개의 읽기 자료
Lesson 5 Overview10m
Lesson 6 Overview10m
2개 연습문제
Lesson 5 Quiz10m
Lesson 6 Quiz8m
완료하는 데 5시간 필요

Week 4

9개 동영상 (총 98분), 2 readings, 3 quizzes
9개의 동영상
7.2. Previous Phrase Mining Methods10m
7.3. ToPMine: Phrase Mining without Training Data12m
7.4. SegPhrase: Phrase Mining with Tiny Training Sets14m
8.1. Frequent Pattern Mining in Data Streams19m
8.2. Pattern Discovery for Software Bug Mining12m
8.3. Pattern Discovery for Image Analysis6m
8.4. Advanced Topics on Pattern Discovery: Pattern Mining and Society—Privacy Issue13m
8.5. Advanced Topics on Pattern Discovery: Looking Forward4m
2개의 읽기 자료
Lesson 7 Overview10m
Lesson 8 Overview10m
2개 연습문제
Lesson 7 Quiz8m
Lesson 8 Quiz8m
44개의 리뷰Chevron Right


이 강좌를 통해 확실한 경력상 이점 얻기

Pattern Discovery in Data Mining의 최상위 리뷰

대학: GLJan 18th 2018

Excellent course. Now I have a big picture about pattern discovery and understand some popular algorithm. Also professor points out the direction for further study.

대학: DDSep 10th 2017

The first several chapters are very impressive. The last three lessons are a little difficult for first-learners. The illustration are clear and easy to understand.



Jiawei Han

Abel Bliss Professor
Department of Computer Science

석사 학위 취득 시작

이 강좌은(는) 일리노이대학교 어버너-섐페인캠퍼스의 100% 온라인 Master in Computer Science 중 일부입니다. 전체 프로그램을 수료하면 귀하의 강좌가 학위 취득에 반영됩니다.

일리노이대학교 어버너-섐페인캠퍼스 정보

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

데이터 마이닝 전문 분야 정보

The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp. Courses 2 - 5 of this Specialization form the lecture component of courses in the online Master of Computer Science Degree in Data Science. You can apply to the degree program either before or after you begin the Specialization....
데이터 마이닝

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.