Chevron Left
Data Science Methodology(으)로 돌아가기

IBM의 Data Science Methodology 학습자 리뷰 및 피드백

16,225개의 평가
1,944개의 리뷰

강좌 소개

Despite the recent increase in computing power and access to data over the last couple of decades, our ability to use the data within the decision making process is either lost or not maximized at all too often, we don't have a solid understanding of the questions being asked and how to apply the data correctly to the problem at hand. This course has one purpose, and that is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand. Accordingly, in this course, you will learn: - The major steps involved in tackling a data science problem. - The major steps involved in practicing data science, from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment. - How data scientists think! LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate....

최상위 리뷰

2019년 5월 13일

This is a proper course which will make you to understand each and every stage of Data science methodology. Lectures are well enough to make you think as a data scientist. Thank you fr this course :)

2020년 2월 26일

Very informative step-by-step guide of how to create a data science project. Course presents concepts in an engaging way and the quizzes and assignments helped in understanding the overall material.

필터링 기준:

Data Science Methodology의 1,929개 리뷰 중 1476~1500

교육 기관: Ali ( M

2018년 10월 4일

I wish the videos contained better slides versus some generic simple ones

교육 기관: Lorena G

2020년 1월 28일

I think is necessary to give more text to read and complement the videos

교육 기관: Mukul K

2019년 3월 5일

the example demonstrated ( patient readmission ) could have been better.

교육 기관: Cole M

2019년 12월 5일

The methodology is described in-depth with adequate video explanations.

교육 기관: Rudolph M N

2019년 5월 16일

This seems very redundant but i suppose it helps reinforce the mindset.

교육 기관: Dipak J

2020년 4월 24일

Scope for improving Peer Assignment .

Do not see paste and paste twice

교육 기관: Ala'a N E

2019년 2월 19일

I had a problem in the case study, it was difficult to understand it .

교육 기관: Ahmed E

2021년 1월 2일

The course is amazing.

But I didn't like that the course is narrated.

교육 기관: Mekebeb T

2020년 6월 3일

Good course but a little short in explanation of some of the topics.

교육 기관: ADITYA S

2020년 2월 26일

Good course to know the steps for carrying out Data Science projects

교육 기관: Anderson F J B

2019년 2월 25일

Describe very good the phases to resolv a problen using data sciense


2020년 7월 6일

Gives good understanding of step by step processes in Data science.

교육 기관: Esau H H

2019년 9월 15일

To the point and the case study really helped get the point across.

교육 기관: Amit S

2019년 7월 1일

This course gave me good insight about the data science methodology

교육 기관: Shuyuan C

2019년 6월 21일

A good introduction to get useful skills for data analysis process.

교육 기관: Pragya A

2019년 6월 17일

more explanation is needed.....example of hospital is not so easy.

교육 기관: AYUSH A

2019년 6월 6일

case study in videos is less understandable but in ungraded notes.

교육 기관: Matthew A

2019년 4월 1일

Very comprehensive view of methodology with real-world case study.

교육 기관: ROBERTO I D L R C

2021년 5월 22일

I have a bigges scenario of how to manage a Data Science project.

교육 기관: Jeroen O O

2020년 12월 14일

Good provides a good intro to the CRISP Framework.

교육 기관: Ridhi S

2020년 5월 13일

It was a good one, but try to take a simpler case study material.

교육 기관: Ravindra D

2019년 11월 13일

Good course primary focus on methodology (a theoretical approach)

교육 기관: Nicklas N

2019년 1월 17일

A good overview of the scientific method applied to data science.

교육 기관: Russell K

2020년 2월 23일

peer graded assignment was graded unfairly for first submission.

교육 기관: Siwei L

2020년 1월 8일

Case of heart failure not common enough for a easy understanding