Chevron Left
Data Science Capstone(으)로 돌아가기

존스홉킨스대학교의 Data Science Capstone 학습자 리뷰 및 피드백

4.5
별점
1,024개의 평가
268개의 리뷰

강좌 소개

The capstone project class will allow students to create a usable/public data product that can be used to show your skills to potential employers. Projects will be drawn from real-world problems and will be conducted with industry, government, and academic partners....

최상위 리뷰

NT

Mar 05, 2018

Capstone did provide a true test of Data Analytics skills. Its like a being left alone in a jungle to survive for a month. Either you succumb to nature or come out alive with a smile and confidence.

SS

Mar 29, 2017

Wow i finally managed to finish the specialization!! definitely learned a lot and also found out difficulties in building predictors by trying to balancing speed, accuracy and memory constraints!!!

필터링 기준:

Data Science Capstone의 258개 리뷰 중 26~50

교육 기관: Guilherme B D J

Mar 24, 2017

The main reason for my rating is because the course is so "loose" on what your are supposed to achieve incrementally every week that it can lead to some hard situations.

Just to give my example: the first week was piece of cake and I didn't feel like it really contribute for the following weeks. Then, I was struggling with the suggested library (tm) until I got support through the discussion forums and someone suggested me to use quanteda.

Then thinks started to run smoothly, or so I thought. When implementing the language model (which, at first, I thought was supposed to be KBO), I got stuck for a long period. Not because my model was wrong (I was able to implement it and to check it against some hand-written and proved examples - which I should probably thank again), but because I was not able to make it run efficiently enough for the given constraints.

Being stuck in this stage for longer than I wanted, I had to sacrifice another important steps of data analysis pipeline in order to not jeopardize my final delivery by not meeting the final due date. I know that this is exactly what will happen in the "real" life, but I think that some better guidance could guarantee the students spent a more even amount of time in across all steps.

All things considered, I think the Capstone was really interesting and likely took more than the 4-9 hours per week, but most of this is probably because of the problems I faced.

I believe that with a better guidance on the paths to follow or maybe some suggested libraries to use, a lot of "noise" (useless difficulty) could be removed and this course would definitely get more starts.

교육 기관: John D M

Sep 20, 2019

A capstone is typically defined as integrating key material from a course. This capstone did not require material from key courses, specifically the machine learning, regression models, and statistical inference courses. That was a great shame. Instead, it threw us into a completely new area, Natural Language Processing.

There were many complaints about that, and I agree. However, it was a challenging task to explore an area in data science we didn't touch on, and challenging in terms of the programming and enormous data file sizes. In that sense it was probably good prep for unexpected challenges in the workplace and therefore good training to make us real data scientists. Still, I would like to see the capstone rejigged to include material from the missing courses. As for NLP, some students claim it is not a useful area to study, but in my case it is exactly the right thing for me to study as I work with analyzing user queries in the form of tickets in a CRM. I found it especially trying to try to integrate some material such as Kneser-Ney theory and opted for a more basic approach. My learning experience would have been better with some proper instruction in that area.

교육 기관: Andrew S

Jun 26, 2017

I felt this course was the weakest of the series. The capstone focuses on building an NLP application, which although I find interesting, does not make for a good final problem as NLP was not really covered in the specialization and NLP is particularly challenging in R. That said, the series as a whole is well worth the time and effort.

교육 기관: Jesse S

Apr 29, 2016

Coursera lost my thoughtful 2-star review so I am replacing it with this. I learned a lot through my own efforts and through the efforts of students who bothered to post in the forums. The one mentor disappeared half-way through the course.

교육 기관: Zoran K

Jun 19, 2017

Overall this was excellent track. While there was a difference in level of difficulty between the individual courses, it is probably unavoidable given the range of subject areas.

I think it would be great improvement if there was a additional 'post-grad' 'course'-like few weeks to connect to industry that is hiring from this background and get those connections to lead the 'grads' into real job interviews; Also, more projects that are direct connection to the industry, like the capstone - where those project would be dine perhaps in some kind of cooperation with the industry reps, so that graduate student here has direct path and had already worked with people that might hire him/her, where the time spent working on the capstone project includes meeting with the reps from the industry whom would have interest in the work. Something along the lines of grants for university projects (not talking about money here) but of a connection to the needs of the industry. Students working on that if they deliver good and interesting results would have one foot into the new job. This would also allow for higher fees to be charged for the classes since there would be more tangible 'selling' path.

교육 기관: MEKIE Y R K

Mar 08, 2020

Really liked this overall course. I was able to get directly into data science aside from my job (quantitative analyst). This specialisation helped me makeing my way in quantitative finance with much more understanding in computing models; much more confidence in the way I will face (I am facing) datas/algorithm issues. Really struggled with the last course(capstone) I even sometime wanted to give up as I went really deep in NLP and was facing issues with my memory.

Finally I'm getting out with strenght, smile, confidence and the taste of hard work in data science projects.

Some other really important point is to learn to be humble :) . This capstone project shows us enough how far it's a constant work to be a data scientist.

Really glad to have completed all the courses; going from zero on R to near hero :)

교육 기관: Zhen ( W

May 13, 2016

I had no experience in natural language processing before I took this course, and now I'm kind of in love with it! Some of my fellow learners complained about the new data type and little information provided, but I feel this is a good simulation of real world experience as a data scientist! The field is constantly changing, so we have to be ready to cope with unfamiliar problems and come up with creative solutions. Due to other commitments, I was once 3 weeks behind the weekly deadlines, but finally poured all my efforts into this and deployed an App in time... You never know how much you can accomplish before you are forced to do a "Mission Impossible" ;-) I think I've improved my hacking + googling skills, and built more confidence over completion of this course. Thank you, JHU and Coursera!

교육 기관: Lucas S T

Jun 27, 2020

The idea of the final project is superb! It really pushes you to your limit, but giving resources through the way so you don't get lost, which is certainly pretty easy.

This course differs a lot from the previous ones because you are pretty much on your own, with only guidelines and references on what they suggest you should do.

The intention is clearly to mimic real life projects, where you have a basic goal, your and others expectations, and knowledge PLUS hardware limitations. And you will have to overcome it in order to be a good Data Scientist!

I really recommend this specialization!

교육 기관: Olivia U

Jun 21, 2020

I've read a few negative reviews, saying it's not guided enough etc. I actually enjoyed finding out on my own how to tackle the problem and building a solution on my own. Also, the peer-reviews assignment was of a much higher quality, and with no plagiarism, with interesting remarks, it was nice to see other student's work and approach. I enjoyed this course, and the entire specialization!

교육 기관: Jose A R N

Jan 20, 2017

My name is Jose Antonio. I am looking for a new Data Scientist career (https://www.linkedin.com/in/joseantonio11)

I did this specialization to get new knowledge about Data Science and better understand the technology and your practical applications.

The course was excellent and the classes well taught by teachers.

Congratulations to Coursera team and Instructors.

교육 기관: Eric R

Apr 03, 2017

For me this project was harder than all other courses combined but, because of that, also more rewarding! The theory is very scarce so you're on your own, that's what makes it hard. Once you get the theory right the rest is easy. I learned a lot of NLP and let me practice "Pitchs" using diferent R tools.

교육 기관: Desiré D W

Sep 25, 2016

The Capstone starts well with sufficient guidance. The second part gives much freedom however, it might be overwhelming and unclear at times what to do next. However, I loved going out on my own and slowly learning more and more on the subject.

You can pretty much choose how much effort you put into it.

교육 기관: Rongbin Y

Jun 04, 2020

Great learning experiences with multiple meaningful projects and lessons. The whole concentration has been well-designed and well-founded. I had built a solid foundation of understanding for subject. Thank you for teaching this concentration, Professor Chen, Professor Leek and Professor Caffo.

교육 기관: Lucas

Aug 24, 2018

In this last module I have learned a lot. It was demanding and quite tricky as you were asked to take your own decisions as there is no best answer at all. I learned to decide what I want and to create an appropriate solution. The best lesson so far along this specialization track.

교육 기관: Nirav D

Jul 03, 2016

I loved doing the capstone project for the Data Science specialisation. I applied all the skills I learnt during the length of the specialisation on Coursera. Having completed this project, I feel more confident about my skills as a data scientist in solving real world problems.

교육 기관: Alma S

Jun 20, 2017

Really challenging but satisfying enough!

Thank you for Cousera team who patiently developed such a beautiful program for upskilling us, the so-called data scientist! :)

The journey to accomplish this Data Science Capstone is something I'd remember & cherish, indeed.

교육 기관: Parmida B

Sep 12, 2017

Awesome specialization! Super happy to be done with 100% on all the courses and 95% on the capstone. I would love to be a part of this great team, maybe as a mentor. Thank you to all the instructors for great lectures and to mentors who helped with the forums.

교육 기관: Akthem R

Mar 18, 2017

A very stimulating and challenging capstone. It is stretching and puts all the 9 specialization courses material to use. It also gives the student a glimpse of what Data Science in real life is and touches on Natural Language Processing as part of AI.

교육 기관: SHREERAM A I

Jun 26, 2016

The sequence of activities in execution of the project envisages multiple interactions with your peers and unfolds your creative aspect to churn out a solution to put all the learning into practice!

Cheers, DSS team - Brian, Jeff and Roger 😁

교육 기관: Javier A D

Oct 11, 2018

It was a new world for me. To hard trying to dive in the subject. But the bases and the effort to research in literature and in the foros let me develop a model of a beginner but with great knowledge to apply in new developments in my work.

교육 기관: Hathairat W

Sep 19, 2019

The assignment was designed very well. I struggled and was thinking of giving up. I'm glad I didn't. The assignment actually required all skills I learnt previously. A bit time consuming but achievable. Thank you very much!

교육 기관: Scott W

May 02, 2016

Was a great course. There was no hand holding, this is the capstone so it was time to put everything to use on a problem that wasn't outlined for you and required you to self study and work with others to deliver.

교육 기관: Samuel Q

Jan 21, 2019

Great way to end the specialization because it forces students to think on their own and be resourceful. It is a totally different type of analysis than on any previous course so it was a great learning experience

교육 기관: Ivan C

Apr 06, 2016

Amazing project! At first glanse It looks strange, but de facto it's standart data science problem: you should analyze raw data, clean it, build some models and make data product. I highly recommend this capstone.

교육 기관: Luis E B

Mar 27, 2017

Excellent to start in data science. Nothing learned deeply but you understand how you can improve. Now I can improve by my own or choose other courses based on my experience, interest and capabilities.