This course will cover the more complex concepts that become involved when working beyond simple datasets. Exploring the connection between visual aspects and data understanding, we will examine how those concepts work together through data storytelling. After reviewing key points on how to avoid problematic visualizations and data misrepresentation, you will continue working in Tableau performing multivariate descriptive analysis of the S&P 500 stock sectors.
제공자:


이 강좌에 대하여
제공자:

캘리포니아 대학교 어바인 캠퍼스
Since 1965, the University of California, Irvine has combined the strengths of a major research university with the bounty of an incomparable Southern California location. UCI’s unyielding commitment to rigorous academics, cutting-edge research, and leadership and character development makes the campus a driving force for innovation and discovery that serves our local, national and global communities in many ways.
강의 계획표 - 이 강좌에서 배울 내용
Multivariate Visualization Methods
For all but the simplest datasets, complex analytics requires a multivariate understanding of the data being studied. Visual interactivity with the data is a key component of multivariate analytics and makes finding higher dimensional relationships in complex datasets more intuitive. In this module, we’ll take a look at various chart types and visualizations used to express comparisons. You will also have the opportunity to practice correlations in Tableau.
Statistical Relationships and Distributions
How important do you think interaction is for general audiences to gain an understanding of complex data sets? In this module, we’ll explore how visual interactivity with the data makes higher dimensional relationships in complex datasets more intuitive and debate whether interactivity in visualization is a hindrance or help for larger audiences.
Storytelling with Data
Why does storytelling matter when delivering data to your audiences? What are the principles of storytelling that you should implement into your visuals? In this module, we’ll examine aspects of storytelling and how to structure your story to effectively communicate the right insights to your key stakeholders.
Ethics, Deception, and Fallacies
Any time we create a visualization, we create an abstract model of the data. As designers, we must ensure that the data is represented as truthfully and objectively as possible because they have the ability to mislead, deceive, or confuse. In this module, we’ll take a look at some problematic visualizations and how to avoid misrepresenting data. You’ll also put your knowledge to use and perform multivariate visualization methods in Tableau.
Use Tableau for Your Data Science Workflow 특화 과정 정보
This specialization covers the foundations of visualization in the context of the data science workflow. Through the application of interactive visual analytics, students will learn how to extract structure from historical data and present key points through graphical storytelling. Additional topics include data manipulation, visualization foundations, audience identification, ethical considerations, dashboard creation, and report generation. Demonstrations of the basic visualization techniques used in Tableau will be included with a hands-on project.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.