Chevron Left
Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization(으)로 돌아가기

deeplearning.ai의 Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization 학습자 리뷰 및 피드백

4.9
별점
58,637개의 평가
6,756개의 리뷰

강좌 소개

In the second course of the Deep Learning Specialization, you will open the deep learning black box to understand the processes that drive performance and generate good results systematically. By the end, you will learn the best practices to train and develop test sets and analyze bias/variance for building deep learning applications; be able to use standard neural network techniques such as initialization, L2 and dropout regularization, hyperparameter tuning, batch normalization, and gradient checking; implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence; and implement a neural network in TensorFlow. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

최상위 리뷰

JS
2021년 4월 4일

Fantastic course and although it guides you through the course (and may feel less challenging to some) it provides all the building blocks for you to latter apply them to your own interesting project.

XG
2017년 10월 30일

Thank you Andrew!! I know start to use Tensorflow, however, this tool is not well for a research goal. Maybe, pytorch could be considered in the future!! And let us know how to use pytorch in Windows.

필터링 기준:

Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization의 6,681개 리뷰 중 151~175

교육 기관: Itsido C A

2019년 12월 16일

This is a must to really understand and master the art of machine learning. With this course I understood that building a model and training it is not even half of the story of being a machine learning engineer, without knowledge of how to tune the models parameters you might not be able to deliver product on schedule. Thanks for Dr Andrew and the team for an awesome content and learning experience.

교육 기관: sunshineren

2019년 8월 31일

It is really a EXTREMELY GOOD course for a bad-basic student, according this course, not only I have know the theories, but also the pratical project.I do think now I know the BN, the Hyperparameter, and the Regularization and so on in Deep Learning field! It would be very helpful for me to step into the AI!

and both videos and lectures are very important for new comers in deep learning ! THANKS ALOT!

교육 기관: Nouroz R A

2017년 9월 13일

This is one of the best MOOC I have ever come up to. Very informative, well explained and easily put. This course helped me to learn so many new things that I had missed in books and research papers. Thanks Andrew Ng, this was like a debt to me. As a wannabe deep learning researcher/Engineer, your contribution to help me catch the basic concepts will always be remembered. :-)

Yes, highly recommended.

교육 기관: ali m

2020년 12월 28일

It was a joyful experience, I've learned some amazing new ideas like exponentially weighted averages and Adam optimizer. I think Dr. Andrew is an amazing teacher, he teaches us some of his experience in the field so we could explore his way of thinking and learn too much from him. After all this course is very helpful to everyone starting a new journey in The Deep learning world so THANKS A LOT.

교육 기관: Rohit

2018년 7월 6일

This course has really helped me alot in gaining better insights about improving deep neural networks by tuning the required hyperparameters. It has also increased my understanding of the previous course and I would definitely recommend this course. I would like to express my gratitude from the bottom of my heart to the Coursera team and the specialization course team for such an amazing course.

교육 기관: XiaoLong L

2017년 8월 14일

After reading the Deep Learning book wrote by Ian Goodfellow, it's much more easy for me to complete this course within two days. I've gotten a lot through this course and know more detail about the deep learning hyperparameter tuning, regularization and optimization methods now. Thanks so much for Prof. Andrew and TAs. I will keep learning the 3rd course in this specification of deep learning.

교육 기관: Anoop P P

2020년 6월 5일

NIce Course on hyperparameters search and tuning. The optimization functions and its relation to the hyperparameters is well taught. Mini-bacth normalization during training and application of learned parameters in testing is discussed very well. At last, deep learning frameworks were introduced and the practical training on tensorflow framework was awesome. Thaks for the well designed content.

교육 기관: Ram N

2020년 1월 1일

The course covers the theory and implementation details of advanced optimization algorithms. A good amount of intuition was provided in the explanation of these algorithms. A basic explanation of bias and variance and how hyper parameters affect them both is explained clearly. I liked the hands on part, as it allowed me to implement the algorithms discussed and gain more clarity in the process.

교육 기관: Harry ( D

2018년 7월 20일

Very useful follow up to the first course in this specialization. Learned all the details of how to tune and optimize a deep neural network, as well as nice introduction to Tensorflow. Some typos in the comments of the final assignments but they were easy to spot. This time Jupiter notebooks worked better that during the time I was working on the previous course with less or no resets required.

교육 기관: Mark R

2021년 3월 22일

Another excellent course. It provides a good background for understanding more about neural networks with a reasonable amount of time and effort. I have no illusion that it is providing knowledge in depth, but I have a much better knowledge of the basic terms and concepts that I did before. I am pleased to know at least something about tensorflow and how to use it to build neural networks.

교육 기관: Mukund C

2019년 10월 14일

Excellent Course. Really structured way of learning the importance of hyper parameters and their effects on the learning/training and hammering concepts like "regularization" home.

Just an observations, but it seems like the mentors are not that engaged in these courses anymore, but there are enough help threads that one can figure out the questions - specifically on the programming exercises.

교육 기관: Ayush K

2018년 6월 16일

What an amazing course it is. Perfect explanation how we can use optimize our cost more efficiently and effectively. Also this course includes techniques to overcome problems like over fitting i.e Regularization and Dropout techniques. Information about Batch Normalization is very splendid. Also got little intuition about tensor flow. Thank You Andrew Ng for providing such a wonderful course.

교육 기관: colinyu

2018년 1월 15일

Prof Ng is a great teacher and is good at making the difficult material very easy to learn. I am very interested in the DL. Before I took this class, I found that since this field is very new so all the material you can find is a little piece and not systematical. This specialization is a wonderful and systematical, easy to learn and fun. Thanks for the great work those teacher have done .

교육 기관: Zhou S

2018년 3월 8일

Awesome illustration on deep network's regularization techniques, weight initialization techniques and gradient checking, and more. This class provides you with hands-on experience with how to tune a deep network efficiently. You will not only learn the techniques but also understand many of the intuitions of how each technique works. A must take if you are dedicated into machine learning!

교육 기관: Rahul B

2020년 9월 5일

This has been a very useful course and helps you to understand much more about neural networks including regularization, optimization algorithms, hyper parameter tuning and programming frameworks. The style of teaching and the programming assignments are of a really good standard. The quizes could be improved to be a bit more challenging but they still help to review content quite well.

교육 기관: Rusty M

2018년 12월 7일

I learned a lot about the area that is not much talked about in deep learning, which is hyperparameter tuning! The forum was very helpful in debugging the programming assignments! Thank you Prof. Ng for the wonderful course. I thank Coursera as well for believing in me and granting me Financial Aid. It wouldn't have been possible without your help, Coursera Team. THANK YOU VERY MUCH! :D

교육 기관: Neeraj B

2019년 10월 2일

This was an excellent follow-up of the first course. Having used adam optimization for almost all the neural network models I have build it was great to understand the mathematical intuition behind adam optimizers. Also the programming assignment gave a wonderful refresher and practice of tensorflow. Overall I'm glad hyperparameter tuning and optimization was chosen as a seperate course

교육 기관: MANRAJ S C

2019년 10월 16일

The course is great and will help you in understanding on how to optimize your deep learning algorithm and tune your hyper-parameters. The course provides insights into the exponentially weighted averages concept too which helps you understand how things work behind the scenes when trying to optimize your algorithm. Dropout and regularization have also been explained to a good extent.

교육 기관: Chan-Se-Yeun

2018년 5월 1일

This course is very useful for practical purpose. I've learnt a systematic method to develop and iterate my algorithms, which saves me a lot of time. And it's been the first time that I get to know so many variants of gradient descent method, such as Adam and RMSprop. By the way, the programming assignments get a bit hard, but it help me better understand the algorithms. Thanks a lot!

교육 기관: Andreea A

2019년 2월 1일

This was a useful course for newbies in neural networks. It gave useful hints regarding how to update the model one is using based on what problems one observes, as well as how to tune the hyperparameters (if there is enough computational power or one runs a small problem). Obviously, this is just a starting point and one should invest a lot of time and energy to become experienced.

교육 기관: Jay G

2018년 9월 23일

All the quality of the first course, but even better. My 4-stars for course one were addressed in these Jupyter notebooks. They were still manageable but the prompts provided very good reinforcement to the various tuning algorithms. A top-notch offering...one I'll be sure to recommend broadly. I'm very much looking forward to the remaining courses in the Specialization. Thanks!

교육 기관: Sarthak k

2019년 8월 12일

I had a very good time getting teaching sessions from ANDREW NG .., I am a second year student and have entered in this field of deep learning since some months then i encountered this specialization and with the deep concepts of Sir ANDREW NG ,i am now able to make much more complicated models ever before...I hope i could get an autograph from my Ideal in this field

Mr.Andrew Ng

교육 기관: sujith

2018년 10월 26일

This is a great course to learn about practical aspects of neural networks. Some parts are challenging to consume as most of the material relies on intuition rather than detailed mathematical explanation. This helps to involve more people in the course who are intimidated by mathematical equations. A great addition would be to have optional mathematical details in separate videos.

교육 기관: Shangjin T

2018년 3월 2일

I've learnt much from course including preprocessing (mini-batch, regularization, normalization), gradient descent algorithm (batch gradient descent, stochastic gradient descent, mini-batch gradient descent) and the variants (momentum, RMSProp, Adam). Also there's TensorFlow tutorials which I love best.

Thanks for Andrew Ng for bringing us such an amazing fundamental course of DNN!

교육 기관: Aakash K S

2020년 10월 30일

Very well structured and thorough course. Instructor did a very good job in teaching the topics of NN such as Regularization, Optimization etc. and explaining the mathematical concepts such as moving average.

Lab made coding assignments easy to understand and code. Lab made it easy for me to understand the structure of NN and how to code clean NN functions for easy implementation.