About this Course
최근 조회 56,503

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 33시간 필요

권장: 8 weeks of study, 10-15 hours per week...

영어

자막: 영어

귀하가 습득할 기술

Constraint ProgrammingBranch And BoundDiscrete OptimizationLinear Programming (LP)

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 33시간 필요

권장: 8 weeks of study, 10-15 hours per week...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 2시간 필요

Welcome

These lectures and readings give you an introduction to this course: its philosophy, organization, and load. They also tell you how the assignments are a significant part of the class. This week covers the common input/output organization of the assignments, how they are graded, and how to succeed in this class.

...
4 videos (Total 43 min), 3 readings, 1 quiz
3개의 읽기 자료
Start of Course Survey10m
Socialize10m
Course Syllabus10m
2
완료하는 데 7시간 필요

Knapsack

These lectures introduce optimization problems and some optimization techniques through the knapsack problem, one of the most well-known problem in the field. It discusses how to formalize and model optimization problems using knapsack as an example. It then reviews how to apply dynamic programming and branch and bound to the knapsack problem, providing intuition behind these two fundamental optimization techniques. The concept of relaxation and search are also discussed.

...
9 videos (Total 101 min), 1 quiz
9개의 동영상
Knapsack 4 - dynamic programming17m
Knapsack 5 - relaxation, branch and bound14m
Knapsack 6 - search strategies, depth first, best first, least discrepancy14m
Assignments Getting Started13m
Knapsack & External Solver10m
Exploring the Material - open course design, optimization landscape, picking your adventure10m
3
완료하는 데 17시간 필요

Constraint Programming

Constraint programming is an optimization technique that emerged from the field of artificial intelligence. It is characterized by two key ideas: To express the optimization problem at a high level to reveal its structure and to use constraints to reduce the search space by removing, from the variable domains, values that cannot appear in solutions. These lectures cover constraint programming in detail, describing the language of constraint programming, its underlying computational paradigm and how it can be applied in practice.

...
13 videos (Total 248 min), 1 reading, 2 quizzes
13개의 동영상
CP 4 - global constraint intuition, table constraint, sudoku19m
CP 5 - symmetry breaking, BIBD, scene allocation18m
CP 6 - redundant constraints, magic series, market split11m
CP 7 - car sequencing, dual modeling18m
CP 8 - global constraints in detail, knapsack, alldifferent33m
CP 9 - search, first-fail, euler knight, ESDD25m
CP 10 - value/variable labeling, domain splitting, symmetry breaking in search28m
Graph Coloring6m
Optimization Tools5m
Set Cover8m
1개의 읽기 자료
Optimization Tools10m
4
완료하는 데 13시간 필요

Local Search

Local search is probably the oldest and most intuitive optimization technique. It consists in starting from a solution and improving it by performing (typically) local perturbations (often called moves). Local search has evolved substantially in the last decades with a lot of attention being devoted on which moves to explore. These lectures explore the theory and practice of local search, from the concept of neighborhood and connectivity to meta-heuristics such as tabu search and simulated annealing.

...
10 videos (Total 191 min), 1 quiz
10개의 동영상
LS 4 - optimality vs feasibility, graph coloring22m
LS 5 - complex neighborhoods, sports scheduling21m
LS 6 - escaping local minima, connectivity15m
LS 7 - formalization, heuristics, meta-heuristics introduction22m
LS 8 - iterated location search, metropolis heuristic, simulated annealing, tabu search intuition18m
LS 9 - tabu search formalized, aspiration, car sequencing, n-queens26m
Traveling Salesman10m
4.9
58개의 리뷰Chevron Right

40%

이 강좌를 수료한 후 새로운 경력 시작하기

38%

이 강좌를 통해 확실한 경력상 이점 얻기

이산형 최적화의 최상위 리뷰

대학: AMFeb 6th 2017

I like the instructor teaching approach and the evaluation system, the subject itself took me a lot of effort and i think the LNS technique should be teached just after local search.

대학: KDSep 4th 2018

i wish there was 6 start rating so i can give this prof his due, he made a very complicated subject look very simple and easy to understand thanks a million

강사

Avatar

Dr. Carleton Coffrin

Adjunct Lecturer
Computing and Information Systems

멜버른 대학교 정보

The University of Melbourne is an internationally recognised research intensive University with a strong tradition of excellence in teaching, research, and community engagement. Established in 1853, it is Australia's second oldest University....

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • Good programming skills, knowledge of algorithms and linear algebra.

  • A minimal knowledge of python is necessary to integrate with the course infrastructure. Outside of that, students are free to use any language of their choice.

  • A motivated student spending the time on the programming assignment will succeed in this class.

  • At the discrete optimization store: http://www.zazzle.com.au/discreteoptimization

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.