About this Course
최근 조회 10,782

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 14시간 필요

권장: 7 weeks of material; 5 to 7 hours per week work for students...

영어

자막: 영어

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 14시간 필요

권장: 7 weeks of material; 5 to 7 hours per week work for students...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 4시간 필요

Course Introduction; Particle Kinematics; Particle Kinetics – Newton’s Laws and Euler’s Laws; Motion of Particles and Mass Centers of Bodies

In this section students will learn about particle kinematics, Newton's Laws and Euler's Laws, motion of particles and mass centers of bodies. ...
8 videos (Total 74 min), 17 readings, 1 quiz
8개의 동영상
Module 2: Particle Kinematics; Rectilinear Motion7m
Module 3: Rectilinear Motion Example8m
Module 4: Rectangular Cartesian Coordinate System, Cylindrical Coordinate System, Tangential and Normal Coordinate System : Position and Velocity6m
Module 5: Tangential and Normal Coordinate System: Acceleration; Curvilinear Motion Example using Tangential and Normal Coordinates14m
Module 6: Define Kinetics; Newton’s 2nd Law; Euler’s 1st Law; Locate Mass Center of Composite Body9m
Module 7: Solve for the Motion of the Mass Center of Bodies using Newton-Euler Equations I9m
Module 8: Solve for the Motion of the Mass Center of Bodies using Newton-Euler Equations II13m
17개의 읽기 자료
Syllabus10m
Consent Form10m
Pdf Version of Module 1: Course Introduction Lecture10m
Get More from Georgia Tech10m
Pdf Version of Module 2: Particle Kinematics; Rectilinear Motion Lecture10m
Pdf Version of Module 3: Rectilinear Motion Example Lecture10m
Worksheet Solutions: Rectilinear Motion Example10m
Pdf Version of Module 4: Rectangular Cartesian Coordinate System, Cylindrical Coordinate System, Tangential and Normal Coordinate System : Position and Velocity Lecture10m
Worksheet Solutions: Tangential and Normal Coordinate System: Acceleration; Curvilinear Motion Example using Tangential and Normal Coordinates10m
Pdf Version of Module 5: Tangential and Normal Coordinate System: Acceleration; Curvilinear Motion Example using Tangential and Normal Coordinates Lecture10m
Pdf Version of Module 6: Define Kinetics; Newton’s 2nd Law; Euler’s 1st Law; Locate Mass Center of Composite Body Lecture10m
Worksheet Solutions: Define Kinetics; Newton’s 2nd Law; Euler’s 1st Law; Locate Mass Center of Composite Body10m
Pdf Version of Module 7: Solve for the Motion of the Mass Center of Bodies using Newton-Euler Equations I Lecture10m
Pdf Version of Module 8: Solve for the Motion of the Mass Center of Bodies using Newton-Euler Equations II Lecture10m
Worksheet Solutions: Solve for the Motion of the Mass Center of Bodies using Newton-Euler Equations II10m
Practice Problems10m
Solution of Quiz 110m
1개 연습문제
Course Introduction; Particle Kinematics; Particle Kinetics – Newton’s Laws and Euler’s Laws; Motion of Particles and Mass Centers of Bodies6m
2
완료하는 데 2시간 필요

Work-Energy Principle for Particles/Systems of Particles

In this section students will learn the work-energy principle for particles/systems of particles, impulse and momentum, impact, conservation of momentum and Euler's 2nd Law - Moment of momentum. ...
5 videos (Total 40 min), 8 readings, 1 quiz
5개의 동영상
Module 10: Work Done by Gravity; Work Done by Friction; Solve Work-Energy Problems for Particles/System of Particles8m
Module 11: Impulse-Momentum Relationship; Define Impact6m
Module 12: Define Coefficient of Restitution; Solve an Impact Problem11m
Module 13: Define Angular Momentum; Euler’s 2nd Law (The Moment Equation)7m
8개의 읽기 자료
Pdf Version of Module 9: Work and Kinetic Energy Principle for Particles/System of Particles; Work of a Linear Spring Lecture10m
Pdf Version of Module 10: Work Done by Gravity; Work Done by Friction; Solve Work-Energy Problems for Particles/System of Particles Lecture10m
Pdf Version of Module 11: Impulse-Momentum Relationship; Define Impact Lecture10m
Pdf Version of Module 12: Define Coefficient of Restitution; Solve an Impact Problem Lecture10m
Pdf Version of Module 13: Define Angular Momentum; Euler’s 2nd Law (The Moment Equation) Lecture10m
Earn a Georgia Tech Badge/Certificate/CEUs10m
Practice Problems10m
Solution of Quiz 210m
1개 연습문제
Work-Energy Principle for Particles/Systems of Particles; Impulse and Momentum; Impact; Conservation of Momentum; Euler’s 2nd Law – Moment of Momentum6m
3
완료하는 데 3시간 필요

Planar (2D) Rigid Body Kinematics I

In this section students will learn about planar (2D) rigid body kinematics, relative velocity equation, rotation about a fixed axis, instantaneous center of zero velocity, and relative acceleration equations....
6 videos (Total 58 min), 11 readings, 1 quiz
6개의 동영상
Module 15: Solve a Relative Velocity problem9m
Module 16: Define and Locate the Instantaneous Center of Zero Velocity (IC)10m
Module 17: Solve an Instantaneous Center of Zero Velocity (IC) Problem9m
Module 18: Define Angular Acceleration; Derive the Relative Acceleration Equation7m
Module 19: Solve a Relative Acceleration Problem9m
11개의 읽기 자료
Pdf Version of Module 14: Define Rigid Body Kinematics; Identify three types of Planar Rigid Body Motion; Derive Relative Velocity Equation Lecture10m
Pdf Version of Module 15: Solve a Relative Velocity problem Lecture10m
Worksheet Solutions: Solve a Relative Velocity Problem10m
Pdf Version of Module 16: Define and Locate the Instantaneous Center of Zero Velocity (IC) Lecture10m
Pdf Version of Module 17: Solve an Instantaneous Center of Zero Velocity (IC) Problem Lecture10m
Worksheet Solutions: Solve an Instantaneous Center of Zero Velocity (IC) Problem10m
Pdf Version of Module 18: Define Angular Acceleration; Derive the Relative Acceleration Equation Lecture10m
Pdf Version of Module 19: Solve a Relative Acceleration Problem Lecture10m
Worksheet Solutions: Solve a Relative Acceleration Problem10m
Practice Problems10m
Solution of Quiz 310m
1개 연습문제
Planar (2D) Rigid Body Kinematics: Relative Velocity Equation; Rotation about a Fixed Axis; Instantaneous Center of Zero Velocity; Relative Acceleration Equation6m
4
완료하는 데 3시간 필요

Planar (2D) Rigid Body Kinematics II

In this section students will continue to learn about planar (2D) rigid body kinematics, relative velocity equation, rotation about a fixed axis, instantaneous center of zero velocity, and relative acceleration equations....
8 videos (Total 73 min), 12 readings, 1 quiz
8개의 동영상
Module 21: Acceleration of a Wheel rolling on a Fixed Plane Curve8m
Module 22: Solve a Rolling Wheel Problem4m
Module 23: Explain the Velocity of the Same Point Relative to Two Different Reference Frames or Bodies; Derive the Derivative Formula11m
Module 24: Derive the Equation for the Velocity of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion7m
Module 25: Solve a Problem for the Velocity of the Same Point Relative to Two Different Frames or Bodies in Planar Motion10m
Module 26: Derive the Equation for the Acceleration of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion10m
Module 27: Solve for the Acceleration of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion12m
12개의 읽기 자료
Pdf Version of Module 20: Acceleration of a Wheel Rolling on a Fixed Straight Surface Lecture10m
Pdf Version of Module 21: Acceleration of a Wheel rolling on a Fixed Plane Curve Lecture10m
Pdf Version of Module 22: Solve a Rolling Wheel Problem Lecture10m
Pdf Version of Module 23: Explain the Velocity of the Same Point Relative to Two Different Reference Frames or Bodies; Derive the Derivative Formula Lecture10m
Pdf Version of Module 24: Derive the Equation for the Velocity of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion Lecture10m
Pdf Version of Module 25: Solve a Problem for the Velocity of the Same Point Relative to Two Different Frames or Bodies in Planar Motion Lecture10m
Worksheet Solutions: Solve a Problem for the Velocity of the Same Point Relative to Two Different Frames or Bodies in Planar Motion10m
Pdf Version of Module 26: Derive the Equation for the Acceleration of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion Lecture10m
Pdf Version of Module 27: Solve for the Acceleration of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion Lecture10m
Worksheet Solutions: Solve for the Acceleration of the Same Point Relative to Two Different Reference Frames or Bodies in Planar Motion10m
Practice Problems10m
Solution of Quiz 410m
1개 연습문제
Planar (2D) Rigid Body Kinematics: Relative Velocity Equation; Rotation about a Fixed Axis; Instantaneous Center of Zero Velocity; Relative Acceleration Equation II6m
4.8
33개의 리뷰Chevron Right

최상위 리뷰

대학: SKMar 8th 2016

A brilliant course, gave me a great foundation for more advanced courses in mechanical engineering. When ever i use some of the things i learned in this course in my work i think of Whiteman.

대학: AKOct 14th 2018

I would just like to say that Prof. Whiteman is a great explainer. I would like to complete most of the courses by him that are available on Coursera.

강사

Avatar

Dr. Wayne Whiteman, PE

Senior Academic Professional
Woodruff School of Mechanical Engineering

조지아공과대학교 정보

The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology. Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 20,000 undergraduate and graduate students receive a focused, technologically based education....

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.