About this Course
3,696

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

초급 단계

완료하는 데 약 11시간 필요

권장: 7 hours/week...

영어

자막: 영어

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

초급 단계

완료하는 데 약 11시간 필요

권장: 7 hours/week...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 4시간 필요

Fibonacci: It's as easy as 1, 1, 2, 3

In this week's lectures, we learn about the Fibonacci numbers, the golden ratio, and their relationship. We conclude the week by deriving the celebrated Binet's formula, an explicit formula for the Fibonacci numbers in terms of powers of the golden ratio and its reciprical. ...
7 videos (Total 55 min), 9 readings, 4 quizzes
7개의 동영상
The Fibonacci Sequence8m
The Fibonacci Sequence Redux7m
The Golden Ratio8m
Fibonacci Numbers and the Golden Ratio6m
Binet's Formula10m
Mathematical Induction7m
9개의 읽기 자료
Welcome and Course Information2m
Get to Know Your Classmates3m
Fibonacci Numbers with Negative Indices10m
The Lucas Numbers10m
Neighbour Swapping10m
Some Algebra Practice10m
Linearization of Powers of the Golden Ratio10m
Another Derivation of Binet's formula10m
Binet's Formula for the Lucas Numbers10m
4개 연습문제
Diagnostic Quiz10m
The Fibonacci Numbers15m
The Golden Ratio15m
Week 150m
2
완료하는 데 4시간 필요

Identities, sums and rectangles

In this week's lectures, we learn about the Fibonacci Q-matrix and Cassini's identity. Cassini's identity is the basis for a famous dissection fallacy colourfully named the Fibonacci bamboozlement. A dissection fallacy is an apparent paradox arising from two arrangements of different area from one set of puzzle pieces. We also derive formulas for the sum of the first n Fibonacci numbers, and the sum of the first n Fibonacci numbers squared. Finally, we show how to construct a golden rectangle, and how this leads to the beautiful image of spiralling squares. ...
9 videos (Total 65 min), 10 readings, 3 quizzes
9개의 동영상
Cassini's Identity8m
The Fibonacci Bamboozlement6m
Sum of Fibonacci Numbers8m
Sum of Fibonacci Numbers Squared7m
The Golden Rectangle5m
Spiraling Squares3m
Matrix Algebra: Addition and Multiplication5m
Matrix Algebra: Determinants7m
10개의 읽기 자료
Do You Know Matrices?
The Fibonacci Addition Formula10m
The Fibonacci Double Index Formula10m
Do You Know Determinants?10m
Proof of Cassini's Identity10m
Catalan's Identity10m
Sum of Lucas Numbers10m
Sums of Even and Odd Fibonacci Numbers10m
Sum of Lucas Numbers Squared10m
Area of the Spiraling Squares10m
3개 연습문제
The Fibonacci Bamboozlement15m
Fibonacci Sums15m
Week 250m
3
완료하는 데 4시간 필요

The most irrational number

In this week's lectures, we learn about the golden spiral and the Fibonacci spiral. Because of the relationship between the Fibonacci numbers and the golden ratio, the Fibonacci spiral eventually converges to the golden spiral. You will recognise the Fibonacci spiral because it is the icon of our course. We next learn about continued fractions. To construct a continued fraction is to construct a sequence of rational numbers that converges to a target irrational number. The golden ratio is the irrational number whose continued fraction converges the slowest. We say that the golden ratio is the irrational number that is the most difficult to approximate by a rational number, or that the golden ratio is the most irrational of the irrational numbers. We then define the golden angle, related to the golden ratio, and use it to model the growth of a sunflower head. Use of the golden angle in the model allows a fine packing of the florets, and results in the unexpected appearance of the Fibonacci numbers in the head of a sunflower. ...
8 videos (Total 61 min), 8 readings, 3 quizzes
8개의 동영상
An Inner Golden Rectangle5m
The Fibonacci Spiral6m
Fibonacci Numbers in Nature4m
Continued Fractions15m
The Golden Angle7m
A Simple Model for the Growth of a Sunflower8m
Concluding remarks4m
8개의 읽기 자료
The Eye of God10m
Area of the Inner Golden Rectangle10m
Continued Fractions for Square Roots10m
Continued Fraction for e10m
The Golden Ratio and the Ratio of Fibonacci Numbers10m
The Golden Angle and the Ratio of Fibonacci Numbers10m
Please Rate this Course10m
Acknowledgments10m
3개 연습문제
Spirals15m
Fibonacci Numbers in Nature15m
Week 350m
4.7
87개의 리뷰Chevron Right

50%

이 강좌를 수료한 후 새로운 경력 시작하기

17%

이 강좌를 통해 확실한 경력상 이점 얻기

최상위 리뷰

대학: AKMar 23rd 2019

Absolutely loved the content discussed in this course! It was challenging but totally worth the effort. Seeing how numbers, patterns and functions pop up in nature was a real eye opener.

대학: BSAug 30th 2017

Very well designed. It was a lot of fun taking this course. It's the kind of course that can get you excited about higher mathematics. Sincere thanks to Prof. Chasnov and HKUST.

강사

Avatar

Jeffrey R. Chasnov

Professor
Department of Mathematics

홍콩과학기술대학 정보

HKUST - A dynamic, international research university, in relentless pursuit of excellence, leading the advance of science and technology, and educating the new generation of front-runners for Asia and the world....

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.