About this Course
35,547

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 27시간 필요

권장: You should expect to watch about 3 hours of video lectures a week. Apart from the lectures, expect to put in between 3 and 5 hours a week....

영어

자막: 영어

귀하가 습득할 기술

Finite DifferencesC++C Sharp (C#) (Programming Language)Matrices

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 27시간 필요

권장: You should expect to watch about 3 hours of video lectures a week. Apart from the lectures, expect to put in between 3 and 5 hours a week....

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 6시간 필요

1

This unit is an introduction to a simple one-dimensional problem that can be solved by the finite element method....
11 videos (Total 200 min), 2 readings, 1 quiz
11개의 동영상
01.02. Introduction. Linear elliptic partial differential equations - II 13m
01.03. Boundary conditions 22m
01.04. Constitutive relations 20m
01.05. Strong form of the partial differential equation. Analytic solution 22m
01.06. Weak form of the partial differential equation - I 12m
01.07. Weak form of the partial differential equation - II 15m
01.08. Equivalence between the strong and weak forms 24m
01.08ct.1. Intro to C++ (running your code, basic structure, number types, vectors) 21m
01.08ct.2. Intro to C++ (conditional statements, “for” loops, scope) 19m
01.08ct.3. Intro to C++ (pointers, iterators) 14m
2개의 읽기 자료
Help us learn more about you!10m
"Paper and pencil" practice assignment on strong and weak forms
1개 연습문제
Unit 1 Quiz8m
2
완료하는 데 3시간 필요

2

In this unit you will be introduced to the approximate, or finite-dimensional, weak form for the one-dimensional problem....
14 videos (Total 202 min), 1 quiz
14개의 동영상
02.01q. Response to a question 7m
02.02. Basic Hilbert spaces - I 15m
02.03. Basic Hilbert spaces - II 9m
02.04. The finite element method for the one-dimensional, linear, elliptic partial differential equation 22m
02.04q. Response to a question 6m
02.05. Basis functions - I 14m
02.06. Basis functions - II 14m
02.07. The bi-unit domain - I 11m
02.08. The bi-unit domain - II 16m
02.09. The finite dimensional weak form as a sum over element subdomains - I 16m
02.10. The finite dimensional weak form as a sum over element subdomains - II 12m
02.10ct.1. Intro to C++ (functions) 13m
02.10ct.2. Intro to C++ (C++ classes) 16m
1개 연습문제
Unit 2 Quiz6m
3
완료하는 데 7시간 필요

3

In this unit, you will write the finite-dimensional weak form in a matrix-vector form. You also will be introduced to coding in the deal.ii framework....
14 videos (Total 213 min), 2 quizzes
14개의 동영상
03.02. The matrix-vector weak form - I - II 17m
03.03. The matrix-vector weak form - II - I 15m
03.04. The matrix-vector weak form - II - II 13m
03.05. The matrix-vector weak form - III - I 22m
03.06. The matrix-vector weak form - III - II 13m
03.06ct.1. Dealii.org, running deal.II on a virtual machine with Oracle VirtualBox12m
03.06ct.2. Intro to AWS, using AWS on Windows24m
03.06ct.2c. In-Video Correction3m
03.06ct.3. Using AWS on Linux and Mac OS7m
03.07. The final finite element equations in matrix-vector form - I 22m
03.08. The final finite element equations in matrix-vector form - II 18m
03.08q. Response to a question 4m
03.08ct. Coding assignment 1 (main1.cc, overview of C++ class in FEM1.h) 19m
1개 연습문제
Unit 3 Quiz6m
4
완료하는 데 5시간 필요

4

This unit develops further details on boundary conditions, higher-order basis functions, and numerical quadrature. You also will learn about the templates for the first coding assignment....
17 videos (Total 262 min), 1 quiz
17개의 동영상
04.02. The pure Dirichlet problem - II 17m
04.02c. In-Video Correction 1m
04.03. Higher polynomial order basis functions - I 23m
04.03c0. In-Video Correction 57
04.03c1. In-Video Correction 34
04.04. Higher polynomial order basis functions - I - II 16m
04.05. Higher polynomial order basis functions - II - I 13m
04.06. Higher polynomial order basis functions - III 23m
04.06ct. Coding assignment 1 (functions: class constructor to “basis_gradient”) 14m
04.07. The matrix-vector equations for quadratic basis functions - I - I 21m
04.08. The matrix-vector equations for quadratic basis functions - I - II 11m
04.09. The matrix-vector equations for quadratic basis functions - II - I 19m
04.10. The matrix-vector equations for quadratic basis functions - II - II 24m
04.11. Numerical integration -- Gaussian quadrature 13m
04.11ct.1. Coding assignment 1 (functions: “generate_mesh” to “setup_system”) 14m
04.11ct.2. Coding assignment 1 (functions: “assemble_system”) 26m
1개 연습문제
Unit 4 Quiz8m
5
완료하는 데 3시간 필요

5

This unit outlines the mathematical analysis of the finite element method....
12 videos (Total 170 min), 1 quiz
12개의 동영상
05.01c. In-Video Correction 56
05.01ct.1. Coding assignment 1 (functions: “solve” to “l2norm_of_error”) 10m
05.01ct.2. Visualization tools7m
05.02. Norms - II 18m
05.02. Response to a question 5m
05.03. Consistency of the finite element method 24m
05.04. The best approximation property 21m
05.05. The "Pythagorean Theorem" 13m
05.05q. Response to a question 3m
05.06. Sobolev estimates and convergence of the finite element method 23m
05.07. Finite element error estimates 22m
1개 연습문제
Unit 5 Quiz8m
6
완료하는 데 1시간 필요

6

This unit develops an alternate derivation of the weak form, which is applicable to certain physical problems....
4 videos (Total 70 min), 1 quiz
4개의 동영상
06.02. Functionals. Free energy - II 13m
06.03. Extremization of functionals 18m
06.04. Derivation of the weak form using a variational principle 20m
1개 연습문제
Unit 6 Quiz4m
7
완료하는 데 6시간 필요

7

In this unit, we develop the finite element method for three-dimensional scalar problems, such as the heat conduction or mass diffusion problems....
24 videos (Total 322 min), 1 quiz
24개의 동영상
07.02. The strong form of steady state heat conduction and mass diffusion - II 19m
07.02q. Response to a question 1m
07.03. The strong form, continued 19m
07.03c. In-Video Correction 42
07.04. The weak form 24m
07.05. The finite-dimensional weak form - I 12m
07.06. The finite-dimensional weak form - II 15m
07.07. Three-dimensional hexahedral finite elements 21m
07.08. Aside: Insight to the basis functions by considering the two-dimensional case 17m
07.08c In-Video Correction 44
07.09. Field derivatives. The Jacobian - I 12m
07.10. Field derivatives. The Jacobian - II 14m
07.11. The integrals in terms of degrees of freedom 16m
07.12. The integrals in terms of degrees of freedom - continued 20m
07.13. The matrix-vector weak form - I 17m
07.14. The matrix-vector weak form II 11m
07.15.The matrix-vector weak form, continued - I 17m
07.15c. In-Video Correction 1m
07.16. The matrix-vector weak form, continued - II 16m
07.17. The matrix vector weak form, continued further - I 17m
07.17c. In-Video Correction 47
07.18. The matrix-vector weak form, continued further - II 20m
07.18c. In-Video Correction 3m
1개 연습문제
Unit 7 Quiz10m
8
완료하는 데 5시간 필요

8

In this unit, you will complete some details of the three-dimensional formulation that depend on the choice of basis functions, as well as be introduced to the second coding assignment....
9 videos (Total 108 min), 2 quizzes
9개의 동영상
08.01c. In-Video Correction 1m
08.02. Lagrange basis functions in 1 through 3 dimensions - II 12m
08.02ct. Coding assignment 2 (2D problem) - I 13m
08.03. Quadrature rules in 1 through 3 dimensions 17m
08.03ct.1. Coding assignment 2 (2D problem) - II 13m
08.03ct.2. Coding assignment 2 (3D problem) 6m
08.04. Triangular and tetrahedral elements - Linears - I 6m
08.05. Triangular and tetrahedral elements - Linears - II 16m
1개 연습문제
Unit 8 Quiz6m
9
완료하는 데 1시간 필요

9

In this unit, we take a detour to study the two-dimensional formulation for scalar problems, such as the steady state heat or diffusion equations....
6 videos (Total 73 min), 1 quiz
6개의 동영상
09.02. The finite-dimensional weak form and basis functions - II 19m
09.03. The matrix-vector weak form 19m
09.03c. In-Video Correction 38
09.04. The matrix-vector weak form - II 11m
09.04c. In-Video Correction 1m
1개 연습문제
Unit 9 Quiz4m
10
완료하는 데 8시간 필요

10

This unit introduces the problem of three-dimensional, linearized elasticity at steady state, and also develops the finite element method for this problem. Aspects of the code templates are also examined....
22 videos (Total 306 min), 2 quizzes
22개의 동영상
10.02. The strong form of linearized elasticity in three dimensions - II 17m
10.02c. In-Video Correction 1m
10.03. The strong form, continued 23m
10.04. The constitutive relations of linearized elasticity 21m
10.05. The weak form - I 17m
10.05q. Response to a question 7m
10.06. The weak form - II 20m
10.07. The finite-dimensional weak form - Basis functions - I 18m
10.08. The finite-dimensional weak form - Basis functions - II 9m
10.09. Element integrals - I 20m
10.09c. In-Video Correction 53
10.10. Element integrals - II 6m
10.11. The matrix-vector weak form - I 19m
10.12. The matrix-vector weak form - II 12m
10.13. Assembly of the global matrix-vector equations - I 20m
10.14. Assembly of the global matrix-vector equations - II 9m
10.14c. In Video Correction 2m
10.14ct.1. Coding assignment 3 - I 10m
10.14ct.2. Coding assignment 3 - II 19m
10.15. Dirichlet boundary conditions - I 21m
10.16. Dirichlet boundary conditions - II 13m
1개 연습문제
Unit 10 Quiz8m
11
완료하는 데 9시간 필요

11

In this unit, we study the unsteady heat conduction, or mass diffusion, problem, as well as its finite element formulation....
27 videos (Total 378 min), 2 quizzes
27개의 동영상
11.01c In-Video Correction 43
11.02. The weak form, and finite-dimensional weak form - I 18m
11.03. The weak form, and finite-dimensional weak form - II 10m
11.04. Basis functions, and the matrix-vector weak form - I 19m
11.04c In-Video Correction 44
11.05. Basis functions, and the matrix-vector weak form - II 12m
11.05. Response to a question 51
11.06. Dirichlet boundary conditions; the final matrix-vector equations 16m
11.07. Time discretization; the Euler family - I 22m
11.08. Time discretization; the Euler family - II 9m
11.09. The v-form and d-form 20m
11.09ct.1. Coding assignment 4 - I 11m
11.09ct.2. Coding assignment 4 - II 13m
11.10. Analysis of the integration algorithms for first order, parabolic equations; modal decomposition - I 17m
11.11. Analysis of the integration algorithms for first order, parabolic equations; modal decomposition - II 14m
11.11c. In-Video Correction 1m
11.12. Modal decomposition and modal equations - I 16m
11.13. Modal decomposition and modal equations - II 16m
11.14. Modal equations and stability of the time-exact single degree of freedom systems - I 10m
11.15. Modal equations and stability of the time-exact single degree of freedom systems - II 17m
11.15q. Response to a question 10m
11.16. Stability of the time-discrete single degree of freedom systems 23m
11.17. Behavior of higher-order modes; consistency - I 18m
11.18. Behavior of higher-order modes; consistency - II 19m
11.19. Convergence - I 20m
11.20. Convergence - II 16m
1개 연습문제
Unit 11 Quiz8m
12
완료하는 데 2시간 필요

12

In this unit we study the problem of elastodynamics, and its finite element formulation....
9 videos (Total 141 min), 1 quiz
9개의 동영상
12.02. The finite-dimensional and matrix-vector weak forms - I 10m
12.03. The finite-dimensional and matrix-vector weak forms - II 16m
12.04. The time-discretized equations 23m
12.05. Stability - I12m
12.06. Stability - II 14m
12.07. Behavior of higher-order modes 19m
12.08. Convergence 24m
12.08c. In-Video Correction 3m
1개 연습문제
Unit 12 Quiz4m
13
완료하는 데 19분 필요

113

This is a wrap-up, with suggestions for future study....
1 video (Total 9 min), 1 reading
1개의 동영상
1개의 읽기 자료
Post-course Survey10m
4.7
57개의 리뷰Chevron Right

67%

이 강좌를 수료한 후 새로운 경력 시작하기

67%

이 강좌를 통해 확실한 경력상 이점 얻기

최상위 리뷰

대학: SSMar 13th 2017

It is very well structured and Dr Krishna Garikipati helps me understand the course in very simple manner. I would like to thank coursera community for making this course available.

대학: YWJun 21st 2018

Great class! I truly hope that there are further materials on shell elements, non-linear analysis (geometric nonlinearity, plasticity and hyperelasticity).

강사

Avatar

Krishna Garikipati, Ph.D.

Professor of Mechanical Engineering, College of Engineering - Professor of Mathematics, College of Literature, Science and the Arts

미시건 대학교 정보

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 수료증을 구매하면 성적 평가 과제를 포함한 모든 강좌 자료에 접근할 수 있습니다. 강좌를 완료하면 전자 수료증이 성취도 페이지에 추가되며, 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 콘텐츠만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • You will need computing resources sufficient to install the code and run it. Depending on the type of installation this could be between a 13MB download of a tarred and gzipped file, to 45MB for a serial MacOSX binary and 192MB for a parallel MacOSX binary. Additionally, you will need a specific visualization program that we recommend. Altogether, if you have 1GB you should be fine. Alternately, you could download a Virtual Machine Interface.

  • You will be able to write code that simulates some of the most beautiful problems in physics, and visualize that physics.

  • You will need to know about matrices and vectors. Having seen partial differential equations will be very helpful. The code is in C++, but you don't need to know C++ at the outset. We will point you to resources that will teach you enough C++ for this class. However, you will need to have done some programming (Matlab, Fortran, C, Python, C++ should all do).

  • Apart from the lectures, expect to put in between 5 and 10 hours a week.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.