About this Course
최근 조회 5,395

다음 전문 분야의 6개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 8시간 필요

권장: This course requires 4 to 5 hours of study....

영어

자막: 영어

귀하가 습득할 기술

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming

다음 전문 분야의 6개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 8시간 필요

권장: This course requires 4 to 5 hours of study....

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 2시간 필요

IBM AI Enterprise Workflow Introduction

3개 동영상 (총 12분), 13 readings, 3 quizzes
3개의 동영상
IBM Watson Studio - Create a project5m
Workflow Overview3m
13개의 읽기 자료
About this course3m
Target Audience2m
Required skills2m
An introduction to IBM Watson Studio and IBM Design Thinking12m
Overview of IBM Watson Studio2m
Am I ready?1m
Am I ready to take this Specialization?3m
Readiness Quiz Review12m
Advantages and disadvantages of process models2m
Data Science Process Models2m
The design thinking process2m
Data science workflow combined with design thinking13m
Process Models, Design Thinking, and Introduction: Summary/Review3m
3개 연습문제
Readiness Quiz45m
Process Models & Design Thinking: Check for Understanding2m
Process Models, Design Thinking, and Introduction: End of Module Quiz10m
완료하는 데 1시간 필요

Data Collection

5개 동영상 (총 17분), 5 readings, 4 quizzes
5개의 동영상
Introduction to Business Opportunities2m
Introduction to Scientific Thinking for Business2m
Introduction to Gathering Data2m
AI Workflow: Gathering data6m
5개의 읽기 자료
Data Collection Objectives2m
Identifying the business opportunity: Through the eyes of our Working Example5m
Scientific Thinking for Business10m
Gathering Data12m
Data Collection: Summary/Review3m
4개 연습문제
Business Opportunities: Check for Understanding4m
Scientific Thinking for Business: Check for Understanding2m
Gathering Data: Check for Understanding2m
Data Collection: End of Module Quiz5m
2
완료하는 데 3시간 필요

Data Ingestion

5개 동영상 (총 40분), 15 readings, 2 quizzes
5개의 동영상
AI Workflow: Data ingestion6m
AI Workflow: Sparse matrices for data pipeline development10m
Using Watson Studio to complete the case study16m
Case Study2m
15개의 읽기 자료
Data Engineering3m
Limitations of Extract, Transform, Load (ETL)3m
Data ingestion in the modern enterprise1m
Enterprise data stores for data ingestion3m
Why we need a data ingestion process2m
Data ingestion and automation3m
Sparse matrices are used early in data ingestion development5m
Getting started Watson Studio3m
Case Study Introduction2m
Getting Started3m
Data Sources2m
PART 1: Gathering the data10m
PART 2: Checks for quality assurance (Includes Assessment)10m
PART 3: Automating the process (Includes Assessment)10m
Data Ingestion: Summary/Review3m
2개 연습문제
Ingesting Data: Check for Understanding3m
Data Ingestion: End of Module Quiz

강사

Avatar

Mark J Grover

Digital Content Delivery Lead
IBM Data & AI Learning
Avatar

Ray Lopez, Ph.D.

Data Science Curriculum Leader
IBM Data & Artificial Intelligence

IBM 정보

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

IBM AI Enterprise Workflow 전문 분야 정보

This six course specialization is designed to prepare you to take the certification examination for IBM AI Enterprise Workflow V1 Data Science Specialist. IBM AI Enterprise Workflow is a comprehensive, end-to-end process that enables data scientists to build AI solutions, starting with business priorities and working through to taking AI into production. The learning aims to elevate the skills of practicing data scientists by explicitly connecting business priorities to technical implementations, connecting machine learning to specialized AI use cases such as visual recognition and NLP, and connecting Python to IBM Cloud technologies. The videos, readings, and case studies in these courses are designed to guide you through your work as a data scientist at a hypothetical streaming media company. Throughout this specialization, the focus will be on the practice of data science in large, modern enterprises. You will be guided through the use of enterprise-class tools on the IBM Cloud, tools that you will use to create, deploy and test machine learning models. Your favorite open source tools, such a Jupyter notebooks and Python libraries will be used extensively for data preparation and building models. Models will be deployed on the IBM Cloud using IBM Watson tooling that works seamlessly with open source tools. After successfully completing this specialization, you will be ready to take the official IBM certification examination for the IBM AI Enterprise Workflow....
IBM AI Enterprise Workflow

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • This course assumes that you are already familiar with basic data science concepts including probability and statistics, linear algebra, machine learning, and the use of Python and Jupyter. If you are unsure we do offer a Readiness Exam you can take to see if you are prepared.

  • No. Most of the exercises may be completed with open source tools running on your personal computer. However, the exercises are designed with an enterprise focus and are intended to be run in an enterprise environment that allows for easier sharing and collaboration. The exercises in the last two modules of the course are heavily focused on deployment and testing of machine learning models and use the IBM Watson tooling found on the IBM Cloud.

  • Yes. All IBM Cloud Data and AI services are based upon open source technologies.

  • The exercises in the course may be completed by anyone using the IBM Cloud "Lite" plan, which is free for use.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.