이 강좌에 대하여

최근 조회 5,358

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

다음 특화 과정의 6개 강좌 중 5번째 강좌:

유동적 마감일

일정에 따라 마감일을 재설정합니다.

고급 단계

완료하는 데 약 6시간 필요

영어

자막: 영어

귀하가 습득할 기술

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

다음 특화 과정의 6개 강좌 중 5번째 강좌:

유동적 마감일

일정에 따라 마감일을 재설정합니다.

고급 단계

완료하는 데 약 6시간 필요

영어

자막: 영어

제공자:

IBM 로고

IBM

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 4시간 필요

Deploying Models

완료하는 데 4시간 필요
3개 동영상 (총 11분), 17 개의 읽기 자료, 4 개의 테스트
3개의 동영상
Introduction to Spark5m
Model Management and Deployment in Watson Studio2m
17개의 읽기 자료
Data at scale: Through the eyes of our Working Example4m
Optimizing performance in Python5m
High performance computing4m
Apache Spark (hands-on)30m
Spark-submit4m
Docker containers: Through the eyes of our Working Example3m
On containers and Docker2m
Docker installation and setup2m
NVIDIA Docker4m
Getting started with Docker4m
Getting started with Flask4m
Putting it all together (hands-on tutorial)45m
More on containers3m
Watson Machine Learning: Through the eyes of our Working Example3m
Getting Started (hands-on)20m
Tutorial (hands-on)40m
Summary/Review10m
4개 연습문제
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
End of Module Quiz10m
2

2

완료하는 데 3시간 필요

Deploying Models using Spark

완료하는 데 3시간 필요
4개 동영상 (총 12분), 11 개의 읽기 자료, 4 개의 테스트
4개의 동영상
Spark Recommendations1m
Recommenders6m
Introduction to Model Deployment Case Study2m
11개의 읽기 자료
Spark Machine Learning: Through the eyes of our Working Example4m
Spark Pipelines4m
Spark supervised learning4m
Spark unsupervised learning (hands-on)45m
Model4m
Spark Recommenders: Through the eyes of our Working Example4m
Recommendation systems4m
Recommendation systems in production4m
Model Deployment: Through the eyes of our Working Example3m
Getting Started (hands-on)1시간
Summary/Review
4개 연습문제
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
End of Module Quiz10m

IBM AI Enterprise Workflow 특화 과정 정보

This six course specialization is designed to prepare you to take the certification examination for IBM AI Enterprise Workflow V1 Data Science Specialist. IBM AI Enterprise Workflow is a comprehensive, end-to-end process that enables data scientists to build AI solutions, starting with business priorities and working through to taking AI into production. The learning aims to elevate the skills of practicing data scientists by explicitly connecting business priorities to technical implementations, connecting machine learning to specialized AI use cases such as visual recognition and NLP, and connecting Python to IBM Cloud technologies. The videos, readings, and case studies in these courses are designed to guide you through your work as a data scientist at a hypothetical streaming media company. Throughout this specialization, the focus will be on the practice of data science in large, modern enterprises. You will be guided through the use of enterprise-class tools on the IBM Cloud, tools that you will use to create, deploy and test machine learning models. Your favorite open source tools, such a Jupyter notebooks and Python libraries will be used extensively for data preparation and building models. Models will be deployed on the IBM Cloud using IBM Watson tooling that works seamlessly with open source tools. After successfully completing this specialization, you will be ready to take the official IBM certification examination for the IBM AI Enterprise Workflow....
IBM AI Enterprise Workflow

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 이 강좌는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 강좌 수료증을 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요. Coursera의 온라인 학위Mastertrack™ 수료증은 대학 학점을 취득할 기회를 제공합니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.