이 강좌에 대하여

최근 조회 117,739

학습자 경력 결과

50%

가 이 강좌를 통해 확실한 경력상 이점을 얻음

50%

가 급여 인상 또는 승진 성취
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 3개 강좌 중 2번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계

High school algebra, successful completion of Course 1 in this specialization or equivalent background

완료하는 데 약 18시간 필요
영어
자막: 영어, 한국어

배울 내용

  • Determine assumptions needed to calculate confidence intervals for their respective population parameters.

  • Create confidence intervals in Python and interpret the results.

  • Review how inferential procedures are applied and interpreted step by step when analyzing real data.

  • Run hypothesis tests in Python and interpret the results.

귀하가 습득할 기술

Confidence IntervalPython ProgrammingStatistical InferenceStatistical Hypothesis Testing

학습자 경력 결과

50%

가 이 강좌를 통해 확실한 경력상 이점을 얻음

50%

가 급여 인상 또는 승진 성취
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 3개 강좌 중 2번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계

High school algebra, successful completion of Course 1 in this specialization or equivalent background

완료하는 데 약 18시간 필요
영어
자막: 영어, 한국어

제공자:

미시건 대학교 로고

미시건 대학교

강의 계획 - 이 강좌에서 배울 내용

콘텐츠 평가Thumbs Up91%(1,740개의 평가)Info
1

1

완료하는 데 3시간 필요

WEEK 1 - OVERVIEW & INFERENCE PROCEDURES

완료하는 데 3시간 필요
9개 동영상 (총 67분), 5 개의 읽기 자료, 1 개의 테스트
9개의 동영상
Inferential Statistical Analysis with Python Guidelines4m
Introduction to Inference Methods: Oh the Things You Will See!3m
Bag A or Bag B?13m
Introduction to Bayesian4m
This or That? Language and Notation13m
The Python Statistics Landscape2m
Intermediate Python Concepts: Lists vs Numpy Arrays10m
Functions and Lambda Functions, Reading Help Files11m
5개의 읽기 자료
Course Syllabus5m
Meet the Course Team!10m
About Our Datasets2m
Help Us Learn More About You!10m
This or That Reference10m
1개 연습문제
Python Basics Assessment15m
2

2

완료하는 데 5시간 필요

WEEK 2 - CONFIDENCE INTERVALS

완료하는 데 5시간 필요
12개 동영상 (총 118분), 3 개의 읽기 자료, 3 개의 테스트
12개의 동영상
Understanding Confidence Intervals10m
Demo: Seeing Theory5m
Assumptions for a Single Population Proportion Confidence Interval3m
Conservative Approach & Sample Size Consideration8m
Estimating a Difference in Population Proportions with Confidence6m
Interpretations & Assumptions for Two Population Proportion Intervals4m
Estimating a Population Mean with Confidence14m
Estimating a Mean Difference for Paired Data10m
Estimating a Difference in Population Means with Confidence (for Independent Groups)14m
Introduction to Confidence Intervals in Python12m
Confidence Intervals for Differences between Population Parameters21m
3개의 읽기 자료
Confidence Intervals: Other Considerations15m
What Affects the Standard Error of an Estimate?10m
Additional Practice: Confidence Intervals1m
3개 연습문제
Practice Quiz: All About Confidence Intervals30m
Sample Size & Assumptions
Confidence Intervals Assessment1시간
3

3

완료하는 데 6시간 필요

WEEK 3 - HYPOTHESIS TESTING

완료하는 데 6시간 필요
12개 동영상 (총 138분), 4 개의 읽기 자료, 3 개의 테스트
12개의 동영상
Testing a One Population Proportion8m
Setting Up a Test of Difference in Population Proportions7m
Testing a Difference in Population Proportions8m
Interview: P-Values, P-Hacking and More24m
One Mean: Testing about a Population Mean with Confidence17m
Testing a Population Mean Difference13m
Testing for a Difference in Population Means (for Independent Groups)12m
Demo: Name That Scenario2m
Chocolate & Cycling Assignment2m
Introduction to Hypothesis Testing in Python20m
Walk-Through: Hypothesis Testing with NHANES13m
4개의 읽기 자료
Hypothesis Testing: Other Considerations10m
The Relationship between Confidence Intervals & Hypothesis Testing5m
Chocolate & Cycling Assignment Instructions5m
Additional Practice: Hypothesis Testing1m
2개 연습문제
Name That Scenario15m
Hypothesis Testing in Python Assessment1시간
4

4

완료하는 데 4시간 필요

WEEK 4 - LEARNER APPLICATION

완료하는 데 4시간 필요
6개 동영상 (총 77분), 3 개의 읽기 자료, 1 개의 테스트
6개의 동영상
Descriptive Inference Examples for Single Variables Using Confidence Intervals12m
Descriptive Inference Examples for Single Variables Using Hypothesis Testing12m
Comparing Means for Two Independent Samples: An Example14m
Comparing Means for Two Paired Samples: An Example12m
Comparing Proportions for Two Independent Samples: An Example13m
3개의 읽기 자료
Assumptions Consistency5m
Revisiting Examples: Accounting for Complex Samples10m
Course Feedback10m
1개 연습문제
Assessment30m

검토

INFERENTIAL STATISTICAL ANALYSIS WITH PYTHON의 최상위 리뷰

모든 리뷰 보기

Statistics with Python 특화 과정 정보

This specialization is designed to teach learners beginning and intermediate concepts of statistical analysis using the Python programming language. Learners will learn where data come from, what types of data can be collected, study data design, data management, and how to effectively carry out data exploration and visualization. They will be able to utilize data for estimation and assessing theories, construct confidence intervals, interpret inferential results, and apply more advanced statistical modeling procedures. Finally, they will learn the importance of and be able to connect research questions to the statistical and data analysis methods taught to them....
Statistics with Python

자주 묻는 질문

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.