About this Course
최근 조회 1,807

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

스페인어

자막: 프랑스어, 포르투갈어 (브라질), 독일어, 영어, 스페인어, 일본어...

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

스페인어

자막: 프랑스어, 포르투갈어 (브라질), 독일어, 영어, 스페인어, 일본어...

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 7분 필요

Introducción

Comenzaremos el curso con una introducción de TensorFlow, la herramienta que usaremos para escribir programas de aprendizaje automático. En el primer curso, aprendió a formular problemas de negocios como problemas de aprendizaje automático. En el segundo, aprendió cómo funciona el aprendizaje automático en la práctica y cómo crear conjuntos de datos para ese uso específico. Ahora que ya cuenta con los datos necesarios, es hora de prepararse para escribir programas de aprendizaje automático.

...
2 videos (Total 7 min)
2개의 동영상
완료하는 데 3시간 필요

Aspectos básicos de TensorFlow

Le presentaremos los componentes centrales de TensorFlow y obtendrá experiencia práctica en la compilación de programas de aprendizaje automático. Comparará y escribirá programas imperativos y de evaluación perezosa; trabajará con gráficos, sesiones y variables y, por último, depurará programas de TensorFlow.

...
19 videos (Total 72 min), 4 quizzes
19개의 동영상
Jerarquía de la API de TensorFlow3m
Evaluación perezosa4m
Gráficos y sesiones4m
Cómo evaluar un tensor2m
Cómo visualizar un grafo2m
Tensores6m
Variables6m
Introducción al lab Escritura de programas de TensorFlow de nivel bajo16
Solución del lab8m
Introducción5m
Problemas de forma3m
Cómo corregir problemas de forma2m
Problemas de tipos de datos1m
Depuración de programas completos4m
Introducción a la depuración de programas completos15
Demostración: Depuración de programas completos3m
3개 연습문제
¿Qué es TensorFlow?2m
Gráfico y sesión8m
Aspectos básicos de TensorFlow20m
2
완료하는 데 4시간 필요

API de Estimator

En este módulo, aprenderá sobre la API de Estimator.

...
18 videos (Total 67 min), 4 quizzes
18개의 동영상
Demostración: Modelo de predicción de precios de viviendas1m
Controles1m
Entrenamiento de conjuntos de datos en la memoria2m
Introducción al lab API de Estimator39
Solución del lab API de Estimator10m
Entrenamiento de conjuntos de datos grandes con la API de Dataset8m
Introducción al lab Cómo escalar la transferencia de TensorFlow mediante lotes35
Solución del lab Cómo escalar la transferencia de TensorFlow mediante lotes5m
Trabajos grandes y entrenamiento distribuido6m
Supervisión con TensorBoard3m
Demostración de la IU de TensorBoard28
Función de entradas de entregas5m
Resumen: API de Estimator1m
Introducción al lab Creación de un modelo de TensorFlow para entrenamiento distribuido con la API de Estimator51
Solución del lab: Creación de un modelo de TensorFlow para entrenamiento distribuido con la API de Estimator7m
1개 연습문제
Estimator API18m
3
완료하는 데 2시간 필요

Escalamiento de modelos de TensorFlow con CMLE

En esta sesión, hablaremos sobre cómo tomar un modelo de TensorFlow y entrenarlo en la infraestructura administrada de GCP para el entrenamiento y la implementación de modelos de aprendizaje automático.

...
6 videos (Total 29 min), 2 quizzes
6개의 동영상
Implementación y supervisión de trabajos de entrenamiento2m
Introducción al lab Cómo escalar TensorFlow con Cloud Machine Learning Engine50
Solución del lab Cómo escalar TensorFlow con Cloud Machine Learning Engine16m
1개 연습문제
Cuestionario: Cloud MLE10m
완료하는 데 2분 필요

Resumen

En esta sesión, resumimos los temas de TensorFlow que se trataron durante este curso. Repasaremos el código básico de TensorFlow y la API de Estimator, y terminaremos con el escalamiento de los modelos de aprendizaje automático con Cloud Machine Learning Engine.

...
1 video (Total 2 min)
1개의 동영상

Google 클라우드 정보

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Machine Learning with TensorFlow on Google Cloud Platform en Español 전문 분야 정보

¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? ¿Cuáles son las cinco fases para convertir un posible caso práctico en un recurso que pueda aprovechar la tecnología de aprendizaje automático? ¿Por qué es importante no saltarse fases? ¿Por qué las redes neuronales son tan populares? ¿Cómo plantear un problema de aprendizaje supervisado y encontrar una buena solución generalizable mediante un descenso de gradientes y una forma meditada de crear conjuntos de datos? Aprenda a escribir modelos de aprendizaje automático distribuido que escalen en Tensorflow y que brinden predicciones de alto rendimiento. Convierta los datos sin procesar en funciones de una forma que permita al AA aprender características importantes de los datos y aportar una percepción humana para abordar los problemas. Por último, aprenda a incorporar la combinación adecuada de parámetros que desarrolle modelos generalizados y exactos, y conozca la teoría para solucionar determinados tipos de problemas de AA. Experimentará con el AA de extremo a extremo, a partir de la construcción de una estrategia centrada en el AA y el avance hacia el entrenamiento, optimización y producción de modelos con labs prácticos mediante Google Cloud Platform. >>> Al inscribirse en esta especialización acepta los Términos de Servicio de Qwiklabs según lo establecido en las Preguntas Frecuentes, disponibles en el apartado: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform en Español

자주 묻는 질문

  • 예. 등록하기 전에 첫 번째 비디오를 미리 보고 강의 계획을 검토할 수 있습니다. 미리 보기에 포함되지 않은 콘텐츠를 이용하려면 강좌를 구매해야 합니다.

  • 세션 시작일 전에 강좌에 등록하면 해당 강좌의 모든 강의 비디오 및 읽기 자료에 접근할 수 있습니다. 수업이 시작되면 과제를 제출할 수 있습니다.

  • 등록 후 세션이 시작되면 읽기 자료 항목 및 강좌 토론 포럼을 포함하여 모든 비디오와 기타 리소스를 이용할 수 있습니다. 연습 평가를 보고 제출하며 필요한 성적 평가 과제를 완료하여 성적을 받고 강좌 수료증을 취득할 수 있습니다.

  • 강좌를 성공적으로 수료하면 전자 강좌 수료증이 성취도 페이지에 추가됩니다. 해당 페이지에서 강좌 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다.

  • 이 강좌는 현재 Coursera에서 수업료를 결제했거나 재정 지원(해당하는 경우)을 받은 학습자만 이용할 수 있는 강좌입니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.