About this Course
최근 조회 162,167

다음 전문 분야의 1개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

고급 단계

영어

자막: 영어, 한국어

귀하가 습득할 기술

Recurrent Neural NetworkTensorflowConvolutional Neural NetworkDeep Learning

다음 전문 분야의 1개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

고급 단계

영어

자막: 영어, 한국어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 5시간 필요

Introduction to optimization

Welcome to the "Introduction to Deep Learning" course! In the first week you'll learn about linear models and stochatic optimization methods. Linear models are basic building blocks for many deep architectures, and stochastic optimization is used to learn every model that we'll discuss in our course.

...
9 videos (Total 63 min), 2 readings, 3 quizzes
9개의 동영상
Course intro6m
Linear regression9m
Linear classification10m
Gradient descent5m
Overfitting problem and model validation6m
Model regularization5m
Stochastic gradient descent5m
Gradient descent extensions9m
2개의 읽기 자료
Welcome!5m
Hardware for the course10m
2개 연습문제
Linear models6m
Overfitting and regularization8m
2
완료하는 데 6시간 필요

Introduction to neural networks

This module is an introduction to the concept of a deep neural network. You'll begin with the linear model and finish with writing your very first deep network.

...
9 videos (Total 85 min), 3 readings, 4 quizzes
9개의 동영상
Chain rule7m
Backpropagation9m
Efficient MLP implementation13m
Other matrix derivatives5m
What is TensorFlow10m
Our first model in TensorFlow10m
What Deep Learning is and is not8m
Deep learning as a language6m
3개의 읽기 자료
Optional reading on matrix derivatives1m
TensorFlow reading1m
Keras reading1m
2개 연습문제
Multilayer perceptron10m
Matrix derivatives20m
3
완료하는 데 5시간 필요

Deep Learning for images

In this week you will learn about building blocks of deep learning for image input. You will learn how to build Convolutional Neural Network (CNN) architectures with these blocks and how to quickly solve a new task using so-called pre-trained models.

...
6 videos (Total 59 min), 3 quizzes
6개의 동영상
Our first CNN architecture10m
Training tips and tricks for deep CNNs14m
Overview of modern CNN architectures8m
Learning new tasks with pre-trained CNNs5m
A glimpse of other Computer Vision tasks8m
1개 연습문제
Convolutions and pooling10m
4
완료하는 데 4시간 필요

Unsupervised representation learning

This week we're gonna dive into unsupervised parts of deep learning. You'll learn how to generate, morph and search images with deep learning.

...
9 videos (Total 81 min), 3 quizzes
9개의 동영상
Autoencoders 1015m
Autoencoder applications9m
Autoencoder applications: image generation, data visualization & more7m
Natural language processing primer10m
Word embeddings13m
Generative models 1017m
Generative Adversarial Networks10m
Applications of adversarial approach11m
1개 연습문제
Word embeddings8m
4.6
216개의 리뷰Chevron Right

29%

이 강좌를 수료한 후 새로운 경력 시작하기

35%

이 강좌를 통해 확실한 경력상 이점 얻기

17%

급여 인상 또는 승진하기

Introduction to Deep Learning의 최상위 리뷰

대학: AKJun 2nd 2019

one of the best courses I have attended. clear explanation, clear examples, amazing quizzes & Programming Assignment this course is advanced level, don't enroll it if you are a new starter.

대학: RKMar 1st 2019

Really Great course. I would recommend everyone to take this course but after having some "basic knowledge" of Machine Learning, Deep Learning, CNN, RNN and programming in python.

강사

Avatar

Evgeny Sokolov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Andrei Zimovnov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Alexander Panin

Lecturer
HSE Faculty of Computer Science
Avatar

Ekaterina Lobacheva

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Nikita Kazeev

Researcher
HSE Faculty of Computer Science

국립 연구 고등 경제 대학 정보

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

고급 기계 학습 전문 분야 정보

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings....
고급 기계 학습

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.