About this Course
601

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 9시간 필요

권장: 10 hours/week...

프랑스어

자막: 프랑스어, 포르투갈어 (브라질), 독일어, 영어, 스페인어, 일본어...

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

탄력적인 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 9시간 필요

권장: 10 hours/week...

프랑스어

자막: 프랑스어, 포르투갈어 (브라질), 독일어, 영어, 스페인어, 일본어...

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 4분 필요

Introduction

Dans ce cours, nous vous enseignerons les connaissances fondamentales en matière de ML pour que vous puissiez comprendre la terminologie que nous utiliserons au cours de cette spécialisation. Grâce aux spécialistes du machine learning de Google, vous découvrirez également des astuces pratiques, ainsi que les écueils à éviter. À la fin du cours, vous disposerez du code et des connaissances nécessaires pour lancer vos propres modèles de ML....
1 video (Total 4 min)
1개의 동영상
완료하는 데 1시간 필요

Le machine learning en pratique

Dans ce module, nous vous présentons certains des principaux types de machine learning et aborderons son histoire, des débuts jusqu'à l'apogée. Vous pourrez ainsi rapidement vous familiariser avec le ML....
10 videos (Total 62 min), 1 quiz
10개의 동영상
Apprentissage supervisé5m
Régression et classification11m
Bref historique du ML : régression linéaire7m
Bref historique du ML : perceptron5m
Bref historique du ML : réseaux de neurones7m
Bref historique du ML : arbres de décision5m
Bref historique du ML : méthodes à noyau4m
Bref historique du ML : forêts d'arbres décisionnels4m
Bref historique du ML : réseaux de neurones modernes8m
1개 연습문제
Quiz du module6m
완료하는 데 1시간 필요

Optimisation

Dans ce module, nous vous guidons sur la voie qui vous permettra d'optimiser vos modèles de ML....
13 videos (Total 61 min), 1 quiz
13개의 동영상
Définir des modèles de ML4m
Présentation de l'ensemble de données "natality"6m
Présentation des fonctions de perte6m
Descente de gradient5m
Résoudre des problèmes relatifs aux courbes de perte2m
Pièges relatifs aux modèles de ML6m
Atelier : Présentation de TensorFlow Playground6m
Atelier : TensorFlow Playground (niveau avancé)3m
Atelier : Utilisation des réseaux de neurones6m
Résoudre des problèmes relatifs aux courbes de perte1m
Statistiques de performances3m
Matrice de confusion5m
1개 연습문제
Quiz du module6m
완료하는 데 3시간 필요

Généralisation et échantillonnage

Penchons-nous maintenant sur une question un peu particulière : dans quelles conditions est-il préférable de ne pas choisir le modèle ML le plus précis ? Comme nous en avons déjà parlé lors du module précédent sur l'optimisation, ce n'est pas parce que le modèle appliqué à un ensemble de données d'apprentissage présente un taux de perte égal à zéro qu'il sera performant pour de nouvelles données réelles....
9 videos (Total 64 min), 3 quizzes
9개의 동영상
Généralisation et modèles de ML6m
Comment déterminer le bon moment pour arrêter l'entraînement d'un modèle ?5m
Créer des échantillons reproductibles dans BigQuery6m
Démonstration : Fractionnement d'ensembles de données dans BigQuery8m
Présentation de l'atelier1m
Explication de l'atelier9m
Présentation de l'atelier2m
Explication de l'atelier23m
1개 연습문제
Questionnaire du module12m
완료하는 데 3분 필요

Résumé

...
1 video (Total 3 min)
1개의 동영상

Google 클라우드 정보

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Machine Learning with TensorFlow on Google Cloud Platform en Français 전문 분야 정보

Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Quelles sont les cinq phases permettant de traiter un cas d'utilisation à l'aide du machine learning, et pourquoi chaque étape est-elle essentielle ? Pourquoi les réseaux de neurones sont-ils désormais si courants ? Comment définir un problème d'apprentissage supervisé et trouver une solution adaptée et généralisable à l'aide de la descente de gradient et d'une méthode pertinente de création d'ensembles de données ? Apprenez à créer des modèles de machine learning distribués qui pourront évoluer dans TensorFlow, à adapter l'entraînement de ces modèles pour bénéficier d'une évolutivité horizontale et à obtenir des prédictions très performantes. Convertissez les données brutes en caractéristiques de sorte que les processus de ML soient en mesure d'identifier les propriétés importantes dans les données et générez des insights qui ont du sens en rapport avec la problématique. Enfin, découvrez comment intégrer à la fois la combinaison de paramètres permettant d'obtenir des modèles précis et généralisés, et une connaissance de la théorie indispensable pour résoudre des types spécifiques de problèmes de ML. Vous expérimenterez le ML de bout en bout en commençant par créer une stratégie centrée sur le ML, puis en progressant dans le processus d'entraînement, d'optimisation et de production de modèles grâce à des ateliers pratiques faisant appel à Google Cloud Platform. >>> En vous inscrivant à cette spécialisation vous acceptez les conditions d'utilisation de Qwiklabs décrites dans la FAQ et disponibles à l'adresse: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform en Français

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.