À partir de l'histoire du machine learning, nous examinons les raisons pour lesquelles les réseaux de neurones fonctionnent si bien de nos jours dans différents problèmes liés à la science des données. Nous évoquons ensuite la façon d'aborder un problème d'apprentissage supervisé et le moyen d'y répondre en utilisant la descente de gradient. Cela implique de créer des ensembles de données menant à une généralisation ; nous évoquons les méthodes pour y parvenir de façon reproductible en utilisant l'expérimentation.
제공자:
이 강좌에 대하여
제공자:

Google 클라우드
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
강의 계획 - 이 강좌에서 배울 내용
Introduction
Dans ce cours, nous vous enseignerons les connaissances fondamentales en matière de ML pour que vous puissiez comprendre la terminologie que nous utiliserons au cours de cette spécialisation. Grâce aux spécialistes du machine learning de Google, vous découvrirez également des astuces pratiques, ainsi que les écueils à éviter. À la fin du cours, vous disposerez du code et des connaissances nécessaires pour lancer vos propres modèles de ML.
Le machine learning en pratique
Dans ce module, nous vous présentons certains des principaux types de machine learning et aborderons son histoire, des débuts jusqu'à l'apogée. Vous pourrez ainsi rapidement vous familiariser avec le ML.
Optimisation
Dans ce module, nous vous guidons sur la voie qui vous permettra d'optimiser vos modèles de ML.
Généralisation et échantillonnage
Penchons-nous maintenant sur une question un peu particulière : dans quelles conditions est-il préférable de ne pas choisir le modèle ML le plus précis ? Comme nous en avons déjà parlé lors du module précédent sur l'optimisation, ce n'est pas parce que le modèle appliqué à un ensemble de données d'apprentissage présente un taux de perte égal à zéro qu'il sera performant pour de nouvelles données réelles.
Résumé
Machine Learning with TensorFlow on Google Cloud Platform en Français 특화 과정 정보
Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Quelles sont les cinq phases permettant de traiter un cas d'utilisation à l'aide du machine learning, et pourquoi chaque étape est-elle essentielle ? Pourquoi les réseaux de neurones sont-ils désormais si courants ? Comment définir un problème d'apprentissage supervisé et trouver une solution adaptée et généralisable à l'aide de la descente de gradient et d'une méthode pertinente de création d'ensembles de données ? Apprenez à créer des modèles de machine learning distribués qui pourront évoluer dans TensorFlow, à adapter l'entraînement de ces modèles pour bénéficier d'une évolutivité horizontale et à obtenir des prédictions très performantes. Convertissez les données brutes en caractéristiques de sorte que les processus de ML soient en mesure d'identifier les propriétés importantes dans les données et générez des insights qui ont du sens en rapport avec la problématique. Enfin, découvrez comment intégrer à la fois la combinaison de paramètres permettant d'obtenir des modèles précis et généralisés, et une connaissance de la théorie indispensable pour résoudre des types spécifiques de problèmes de ML.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
Is financial aid available?
강좌를 수료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.