Mathematics for Machine Learning: Linear Algebra(으)로 돌아가기

4.7

stars

4,618개의 평가

•

835개의 리뷰

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before.
At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

Sep 10, 2019

Excellent review of Linear Algebra even for those who have taken it at school. Handwriting of the first instructor wasn't always legible, but wasn't too bad. Second instructor's handwriting is better.

Apr 01, 2018

Amazing course, great instructors. The amount of working linear algebra knowledge you get from this single course is substantial. It has already helped solidify my learning in other ML and AI courses.

필터링 기준:

교육 기관: David P

•Jul 10, 2018

Great content, lecture videos are brilliant. I would make one suggestion; it would be great to have more examples or even recommend text books that we as learners can download or purchase, this will assist those who wants to learn these techniques in practical examples. Other than that I have learned alot and will continue using coursera, good job guys

교육 기관: Ahmed R

•Apr 22, 2018

This is a very good introduction and review of Linear Algebra. The particular highlights are the use of geometric perspectives to give intuition rather than just labouring through the mathematics. I also learned where I need to learn more in order. Overall will recommend either as a review or a stepping stone to learning more about Linear Algebra.

교육 기관: Kohinoor G

•Apr 24, 2018

One of the best Linear Algebra [LA] courses for beginners/novices. It takes away the drudgery of algebra and formulae and tries to explain the "essence" of LA. This is by no means comprehensive LA course - but good enough for people who are fed up with "this is how to calculate the Eigen vector/determinant/<insert pet peeve>" mode of teaching LA.

교육 기관: Duc D

•Sep 22, 2019

Awesome content and very clear lectures. Would be great to have links to more in-depth explanations of certain unexplained assumptions. For instance, it's unclear how the characteristic equation comes about (by assuming that the characteristic matrix does not have an inverse) and also why the page rank matrix is setup the way it is.

교육 기관: 谢仑辰

•Feb 28, 2019

I really appreciate staff of ICL's effort to bring us such an intuitive and straightforward course. It's totally different from those linear algebra courses I've received in China. From your idea on explaining this course on space and transformation, I started to build a strong foundation about linear algebra, and machine learning.

교육 기관: Paul K M

•Oct 09, 2019

This course gives a good overview of linear algebra using python numpy arrays. It doesn't go super deep into the topic, but I wouldn't call it superficial. It requires you to do some basic vector and matrix algebra by hand, build agorithms to do some of those calculations, and introduces some numpy methods for those operations.

교육 기관: Michelle W

•Jul 03, 2018

Excellent course. I have never taken a linear algebra course before, so it took me longer to complete this as I had to learn the basics to follow the material in this course. The course is designed as a review of linear algebra, but if you are motivated and have time, it's possible to complete without having had linear algebra.

교육 기관: Shubham D

•May 09, 2018

Amazing course.Do not let the easy content distract you from the fact that this is one of the best/well taught MOOCs on Coursera.These professors are experts at helping student develop an intuition for mathematics.Way different from what was taught in my school/university and also much more useful in a practical sense.

교육 기관: AVADH P

•Oct 03, 2018

The course and the content is quite fruitful for anyone who wants to go ahead in the area of Machine Learning. The course instructor gives a detailed understanding of each topic and insight of the methods of vector calculus and linear algebra. For building the basic fundamentals of ML, this course is must for anyone.

교육 기관: Christos P

•Jul 02, 2018

It was honestly great. The first two weeks didn't have much new for someone who'd already taken Linear Algebra, but the last three weeks were very informational. It really helped me understand the concepts geometrically/spatially in ways I hadn't seen before when I had taken general linear algebra at my university.

교육 기관: Daniel G

•May 29, 2019

This course brilliantly delivered on each of its intended learning objectives in an engaging and non-threatening way - I would encourage anyone interested in this topic, regardless of their background. The course instructors are excellent, and the forum discussions are extremely helpful if/when you are ever stuck.

교육 기관: Ashutosh M

•Mar 07, 2019

The course is great for those who are new to machine learning and want to start from mathematics behind it. The course focuses on vector and matrices and how to solve System of Linear Equations using it. You will develop intuition of what matrix transformations are and how to use change in basis to your advantage.

교육 기관: Jitesh J T

•Dec 12, 2019

Superb lectures and lucid explanations of the topics make this course one of my favorites! The video quality was superb and the course content, assignments and degree of difficulty was wonderfully designed to test the skills. Would definitely attend more courses from Imperial college.

Thank you

Dr. Jitesh Tripathi

교육 기관: Sharan S M

•Dec 05, 2019

Great course. Really enjoyed it because the instructors teach well. Also, the practice quizzes are useful for understanding the content. I was able to do all the assignment thanks to all the practice that they have given. Great course and I recommend that anybody interested in machine learning take this course.

교육 기관: Ashley Z

•Oct 17, 2019

Really recommend to all who would like to dive into machine learning with some mathematical background in vectors, matrices and eigenstuff. The instructors are very good and the homework/programming assignments are manageable while giving good insights into the application of the formulas learned in the course.

교육 기관: Maksim U

•Oct 14, 2018

This is a great course. All explanations and examples are easy and useful, the tasks are challenging but solvable. Certain points of the course might be unclear for students with limited math knowledge, some tasks will make you look for extra info elsewhere. But all in all I would really recommend this course.

교육 기관: Harsh D

•Mar 06, 2019

Great Course, exceptional in every way, gives you practice drill down some of the concepts, and handy programming assignments that are fun to work with, while not a complete refresher the course is good enough to grasp essence of linear algebra to build intuitive math, rather than classical way of teaching.

교육 기관: Joaquin R

•Nov 05, 2018

It has been a while since I took Linear Algebra in my undergraduate years. This course has improved my knowledge of Linear Algebra and most especially eigen theory. This will greatly enhance my understanding of Machine Learning. Thank you to the professors for imparting their knowledge of Linear Algebra.

교육 기관: Mingyang Z

•Sep 06, 2019

Excellent course with clear instruction video to explain the concept of linear algebra. The assignment is relatively challenging to help practice the learnt concept. I wish I could learn more about some special characteristic of matrix, such as block matrix, and how to compute singular value decomposition.

교육 기관: J. W

•May 10, 2018

I took Linear Algebra in undergrad nearly 20 years ago. The instructors for this course developed the inuition behind core concepts in such a way that it made the material very accessible and provided a great basis for further study using supplementary material. I am pleased with the overall presentation.

교육 기관: Ronny A

•Jun 11, 2018

Excellent Linear Algebra refresher. I love it that this course distills and covers the core concepts in a very time efficient manner! Also, I am happy with the emphasis on images and graphs to develop intuition. The programming exercises such as Reflecting Bear and Page Rank have been curated well.

교육 기관: Gyrdymov I

•May 30, 2018

The lecturers gave me robust intuition that lies behind almost all main processes in linear algebra. Also, the course has pretty good visualization side (bright, useful, clear and understandable images, schemes and plots are used in this course to provide better understanding of the main concepts).

교육 기관: David B

•Feb 16, 2019

The video approach to this course is really amazing. The visuals presented and the ease in understanding touch mathematical concepts made this course fantastic to take. Although I would have preferred more challenging quizzes and programming assignments the material taught was still world class.

교육 기관: Akshita B

•Nov 11, 2018

I feel this course is easy and challenging in its own way. It didn't overburden me but at the same time it made me feel that I am learning something every week. Also, they keep revising the concepts as they move forward so it helps retaining the concepts too. Cheers! I really liked the course.

Coursera provides universal access to the world’s best education,
partnering with top universities and organizations to offer courses online.