이 강좌에 대하여

최근 조회 9,787
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 14시간 필요
러시아어
자막: 러시아어

귀하가 습득할 기술

Data ModelingRegression ValidationR ProgrammingLinear RegressionStatistics
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 14시간 필요
러시아어
자막: 러시아어

제공자:

상트 페테르부르크 주립 대학교 로고

상트 페테르부르크 주립 대학교

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 3시간 필요

Корреляционный анализ. Простая линейная регрессия

완료하는 데 3시간 필요
14개 동영상 (총 97분), 2 개의 읽기 자료, 1 개의 테스트
14개의 동영상
Пример - размер мозга и IQ8m
Взаимосвязи между явлениями8m
Ковариация и корреляция9m
Тестирование статистической значимости коэффициента корреляции4m
Корреляционный анализ в R4m
Модели как отражение взаимосвязи6m
Простая линейная регрессия9m
Метод наименьших квадратов10m
Подбор коэффициентов линейной регресии в R6m
Стандартные ошибки коэффициентов регрессии7m
Доверительные интервалы коэффициентов и доверительная зона регрессии6m
Использование регрессии для предсказаний9m
Что мы знаем и что будет дальше3m
2개의 읽기 자료
Обзор курса10m
Материалы: Корреляционный анализ. Простая линейная регрессия10m
2

2

완료하는 데 3시간 필요

Проверка значимости и валидности линейных моделей

완료하는 데 3시간 필요
13개 동영상 (총 89분), 1 개의 읽기 자료, 1 개의 테스트
13개의 동영상
Тестирование значимости коэффициентов регрессии при помощи t-теста7m
Тестирование значимости модели при помощи F критерия8m
Качество подгонки модели4m
Не стоит обольщаться. Зачем нужна диагностика моделей4m
Разновидности остатков6m
Влиятельные наблюдения и как с ними бороться8m
Линейность связи8m
Независимость наблюдений10m
Нормальное распределение остатков6m
Постоянство дисперсии остатков5m
Анализ остатков в R10m
Что мы знаем и что будет дальше3m
1개의 읽기 자료
Материалы: Проверка значимости и валидности линейных моделей10m
3

3

완료하는 데 3시간 필요

Краткое введение в мир линейной алгебры

완료하는 데 3시간 필요
11개 동영상 (총 81분), 1 개의 읽기 자료, 1 개의 테스트
11개의 동영상
Разновидности матриц3m
Основные действия с матрицами7m
Основы матричного умножения9m
Умножение двух матриц10m
Решение систем уравнений при помощи матриц12m
Линейная регрессия в матричном виде7m
Вычисление остатков в матричном виде5m
Строим график модели вручную6m
Доверительная зона регрессии в матричном виде10m
Что мы знаем и что будет дальше2m
1개의 읽기 자료
Материалы: Краткое введение в мир линейной алгебры10m
4

4

완료하는 데 3시간 필요

Множественная линейная регрессия

완료하는 데 3시간 필요
12개 동영상 (총 93분), 1 개의 읽기 자료, 1 개의 테스트
12개의 동영상
Пример - маркер рака простаты3m
Протокол анализа данных7m
Разведочный анализ в R17m
Модель множественной линейной регрессии и ее интерпретация11m
Мультиколлинеарность и другие условия применимости15m
Взаимодействия предикторов3m
Сравнение влияния отдельных предикторов7m
Качество подгонки модели множественной линейной регрессии3m
Визуализация модели: один предиктор10m
Визуализация модели: два предиктора5m
Что мы знаем и что будет дальше1m
1개의 읽기 자료
Материалы: Множественная линейная регрессия10m

Просто о статистике (с использованием R) 특화 과정 정보

Специализация “Просто о статистике” познакомит вас с основами прикладного анализа данных. Здесь не будет сложной математики, зато мы разберем на практике множество примеров. Вы научитесь описывать данные графически и при помощи описательных статистик; тестировать гипотезы, делая поправки на множественность тестов. При помощи линейных моделей вы сможете анализировать данные разных типов и проверять, выполняются ли допущения, лежащие в основе статистических методов. В частности, мы разберем, как устроены простая и множественная линейная регрессия, дисперсионный анализ, логистическая и Пуассоновская регрессия и т.д. Наконец, вы научитесь строить смешанные линейные модели, позволяющие работать с данными, когда благодаря дизайну сбора материала отдельные наблюдения оказываются взаимозависимы. Для статистического анализа мы будем использовать язык R -- универсальный язык науки о данных. Даже если вы раньше не писали программ, вы сможете научиться не только адаптировать существующие, но и создавать свои собственные скрипты для анализа данных. Каждый из курсов заканчивается практическим проектом, так что к концу специализации вы сможете собрать портфолио из разных видов анализа данных. Отчеты по проекту, выдержанные в традиции воспроизводимых исследований, вы научитесь создавать, не покидая R, при помощи пакетов knitr / rmarkdown....
Просто о статистике (с использованием R)

자주 묻는 질문

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.