Модель машинного обучения, обученная с высокой точностью — это хорошо, но не достаточно. Чтобы полностью раскрыть ее потенциал и начать решать с ее помощью реальные задачи, необходимо провести дополнительную работу по запуску модели в виде какого-то сервиса. В эту работу входит проектирование системы обработки данных, создание инфраструктуры для этой системы, оптимизация работы модели и последующий анализ работы полученного сервиса.
이 강좌는 Промышленное машинное обучение 특화 과정의 일부입니다.
제공자:
이 강좌에 대하여
Основы программирования на Python и SQL,
Основы Unix,
Основы высшей математики,
Основы компьютерных сетей,
Базовые знания о машинном обучении.
배울 내용
Работа с контейнеризированными приложениями
Анализ данных работы сервиса
Оптимизация моделей машинного обучения
Быстрый поиск релевантного ответа к запросу
귀하가 습득할 기술
Основы программирования на Python и SQL,
Основы Unix,
Основы высшей математики,
Основы компьютерных сетей,
Базовые знания о машинном обучении.
제공자:

HSE 대학
HSE University is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more.
강의 계획 - 이 강좌에서 배울 내용
Развертывание ML-моделей
Когда модель машинного обучения можно запустить в Jupyter Notebook - это хорошо. Однако чтобы она начала решать какую-то задачу из реального мира, необходимо научиться разворачивать эту модель на полноценных вычислительных кластерах. В этой неделе мы познакомимся с классическими архитектурными подходами при построении таких систем и узнаем про популярные инструменты в этой области.
Анализ системы и продуктовая аналитика
На этой неделе мы попробуем себя в роли продуктового аналитика и разберем, как с помощью метрик контролировать и улучшать свой сервис.
Полный цикл разработки ML-сервиса
Этот модуль посвящен вопросам введения моделей в эксплуатацию с минимальными рисками отказа и недоступности сервиса и практикам MLOps. Рассматриваются требования к процессу ввода в эксплуатацию, основные определения, этапы, необходимый инструментарий. Практические работы посвещены процессу ввода моделей в эксплуатацию с помощью MLflow и отработке сценариев введения в эксплуатацию и работы с отказами сервиса.
Оптимизация моделей, исполнение на клиенте
Сегодня обучают просто огромные нейросети для решения задач, но чтобы это внедрить в промышленную эксплуатацию, приходится придумывать трюки для ускорения этих монстров. Задача стоит еще более остро, когда сеть должна выполняться на мобильном устройстве. Этим проблемам будет посвящена эта неделя.
Промышленное машинное обучение 특화 과정 정보
Программа состоит из трех курсов, позволяющих освоить методы обработки больших данных и получить представление о процессе проектирования, реализации и поддержки полноценного решения на базе интеллектуального анализа данных.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
Is financial aid available?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.