Chevron Left
Математика и Python для анализа данных(으)로 돌아가기

모스크바 물리 기술원의 Математика и Python для анализа данных 학습자 리뷰 및 피드백

4.8
별점
5,625개의 평가
947개의 리뷰

강좌 소개

Анализ данных и машинное обучение существенно опираются на результаты из математического анализа, линейной алгебры, методов оптимизации, теории вероятностей. Без фундаментальных знаний по этим наукам невозможно понимать, как устроены методы анализа данных. Задача этого курса — сформировать такой фундамент. Мы обойдёмся без сложных формул и доказательств и сделаем упор на интерпретации и понимании смысла математических понятий и объектов. Для успешного применения методов анализа данных нужно уметь программировать. Фактическим стандартом для этого в наши дни является язык Python. В данном курсе мы предлагаем познакомиться с его синтаксисом, а также научиться работать с его основными библиотеками, полезными для анализа данных, например, NumPy, SciPy, Matplotlib и Pandas. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

최상위 리뷰

GI
2017년 3월 31일

Курс замечательный, прошел его еще в октябре 2016, отзыв пишу спустя почти полгода, лекции из курса до сих пор периодически читаю, дабы оставаться в форме. Материал изложен кратко, доступно и по делу.

GD
2018년 8월 8일

Лучший вводный курс, который я видел. Есть мелкие огрехи в изложении математической части, но это ерунда по сравнению с четкостью и полнотой изложения программистской части и обилием примеров. Спасибо

필터링 기준:

Математика и Python для анализа данных의 920개 리뷰 중 176~200

교육 기관: Сагындык Б Н

2019년 1월 18일

Все отлично, математика разжевана и представлена в облегченном варианте. Но как я понимаю нужно все таки ее глубже для себя изучить на будущее верно? Хоть и преподаватели данного курса упорно утверждают что этого достаточно для практики и data science

교육 기관: Pavel P

2018년 10월 9일

Замечательный вводный курс! Понравился способ изложения, аккуратные конспекты и интересные задания, которые помогают глубже понять материал. Вспомнил кое-что подзабытое из математики, попрактиковался на Питоне, можно двигаться дальше по специализации!

교육 기관: Ахременков Д В

2020년 4월 29일

Отличный вводный курс, который позволяет вспомнить университетскую математику, а так же попробовать силы в базовых библиотеках Python. Особенно понравилась последняя неделя, где встречались достаточно нетривиальные задачи (в сравнении с 1-3 неделей)!

교육 기관: Andrew D

2017년 12월 29일

Отличный курс. Интересные практические задания (жаль что мало), уточнил и упорядочил для себя некоторые вещи. Требуется небольшая базовая подготовка для комфортного прохождения курса, но можно и без нее - в курсе достаточно методических материалов.

교육 기관: Андрей О

2021년 4월 13일

В целом курс понравился! Показалось, что темы 4 недели (теория вероятностей и статистика) недостаточно подробно разобраны. Возможно имеет смысл расширить конспект по 4 недели разбором задач и прочего. И спасибо всем кто работал над этим курсом :)

교육 기관: Латыпова П

2017년 6월 29일

В курсе рассказывают просто о сложном, помогают вспомнить то, что забыл, или узнать новое. Здорово, что сразу становится понятно, как именно на практике можно применять полученные знания. Отличный подготовительный шаг для освоения специализации.

교육 기관: Andrey

2017년 7월 3일

Очень интересный курс! Правда, материала и примеров, которые они рассказывают в лекциях не достаточно и хотелось бы, чтобы были ссылки на дургие источники, где можно изучить матриал с примерами более подробно. Тем не менее, курс мне понравился!

교육 기관: Alexei K

2016년 8월 10일

Отличный курс, интересные задания.

Спасибо что выбрали Python, а не R. Python более универсальный, лучше документирован и быстрее развивается. И отдельное спасибо за использование Jupyter-ноутбуков, работа в них получается наглядной и удобной.

교육 기관: Митягин К С

2016년 4월 5일

Курс хорошо структурирован, преподаватели отлично доносят материал до слушателя. Практических заданий,на мой взгляд, можно было сделать больше и немного сложнее. В целом, курс понравился и появились интерес и желание пройти всю специализацию.

교육 기관: Ольга К

2020년 1월 9일

Спасибо преподавателям, курс позволил вспомнить математику и познакомиться с Python. Это было не очень просто, но, точно, полезно, и для текущей работы, и для возможной будущей. Хочу дальше изучать направление "Анализ данных" и язык Python.

교육 기관: Семенюк А П

2019년 1월 16일

Понравился формат подачи информации, видеоуроки понятны, конспекты подробны, ноутбуки полезны для решения тестов и заданий по программированию. Изучала Python с нуля, и за короткий срок смогла понять многие аспекты. Все очень понравилось!

교육 기관: Габсатаров Ю В

2019년 1월 15일

Курс очень интересен и полезен всем, кто хочет получить представление о методах работы с данными. Для освоения желательно, но не обязательно, иметь представление об основах программирования, математического анализа и теории вероятностей.

교육 기관: Юрасик Г А

2019년 3월 19일

Хорошо структурированный курс, имеет оптимальное соотношение объема излагаемого материала к объему знаний, необходимых для ознакомления с темой и первичного ее освоения. Дает в хорошей пропорции необходимую теорию и практические навыки.

교육 기관: Сумин В Д

2021년 2월 16일

Имею высшее, связанное с математикой, и знаком с синтаксисом пайтона, поэтому было слишком просто. Для повторения основных формул или получения представления о том, какие навыки и знания понадобятся в дальнейшем, курс подходит отлично.

교육 기관: Вероника И

2020년 5월 6일

Математика довольно простая, особенно на первых двух неделях, все изучала в институте. Но на данном курсе теория хорошо проиллюстрирована. А с python было сложновато. Мне кажется лучше проходить этот курс будучи уже знакомым с python.

교육 기관: Melnikov A A

2018년 5월 2일

Курс помог мне освоить основы математического анализа и статистики. Они применимы на практике от того особенно ценны. Практические задания закрепляют навыки применения алгоритмов при помощи популярных библиотек SciPy, NumPy и Pandas.

교육 기관: Timur G

2020년 10월 14일

Курс рассчитан на тех, кто уже знаком с материалом. Хороший дайджест важных вопросов, есть любопытные методические находки. Несколько неравнозначный подход у различных преподавателей и неоднородное распределение нагрузки по темам.

교육 기관: Гридасов И И

2017년 7월 26일

За час рассказать вкратце программу первого курса по матану и линальной алгебре, думаю у вас получилось) Плюс ещё и изучили основные библиотеки python для анализа данных, думаю дальше на этой базе посторится отличная специальзация

교육 기관: 824 К Д С

2019년 2월 18일

Очень хороший и продуманный курс. Единственное -- иногда не хватает размеренности и строгости в математической части. Некоторые вещи (например, pandas) уже забыл, т.к. использовал один раз, но верю, что в следующем курсе вспомню.

교육 기관: Andrey S

2017년 10월 15일

Курс хорош, особенно для тех, кто проходил все эти математические выкладки в универе, но потом за ненадобностью забыл. Освежает в памяти и учит научным вычислениям на python. Радует большое количество примеров и сниппетов кода.

교육 기관: Yanovskiy A O

2020년 7월 9일

Отличный курс! Позволяет получить самые базовые знания математики и программирования для дальнейшего обучения. Для человека хоть немного знающего питон и математику, освоить курс вполне реально, но могут встречаться трудности

교육 기관: Roman Y

2016년 9월 3일

Отлично сформированный курс, постепенно вводящий человека в прекрасный и удивительный мир машинного обучения. Пожалуй единственный минус это очень малая активность в обсуждениях задач и лекций, всё остальное мне понравилось.

교육 기관: Manakov A V

2017년 10월 17일

Отличная подача и набор, представленного в курсе, материала.

Материал по Python - думаю лучше углубить и расширить (более подробно рассказать ).

Тервер и статистика понравились больше всего.

Молодцы!

Спасибо за курс.

교육 기관: Sybyl A

2019년 1월 28일

Курс понравился, хорошо направляет в теоретическую часть анализа данных. Возможно, на начальном уровне математического аппарата будет достаточно, но для серьезных вещей его однозначно нужно будет развивать и дальше.

교육 기관: Ponomarev D

2016년 4월 3일

Отличный курс, хорошая подача материала.

Четвертый раздел показался довольно сложным. То ли он сам по себе такой, то ли стоит немного иначе структурировать материал. Возможно, необходимо больше примеров и их решений.