이 강좌에 대하여

최근 조회 10,134

학습자 경력 결과

50%

가 이 강좌를 통해 확실한 경력상 이점을 얻음
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 5개 강좌 중 4번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
완료하는 데 약 13시간 필요
영어
자막: 영어

학습자 경력 결과

50%

가 이 강좌를 통해 확실한 경력상 이점을 얻음
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 5개 강좌 중 4번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
완료하는 데 약 13시간 필요
영어
자막: 영어

제공자:

미네소타 대학교 로고

미네소타 대학교

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 4분 필요

Preface

완료하는 데 4분 필요
1개 동영상 (총 4분)
2

2

완료하는 데 1시간 필요

Matrix Factorization (Part 1)

완료하는 데 1시간 필요
5개 동영상 (총 70분), 1 개의 읽기 자료
5개의 동영상
Singular Value Decomposition17m
Gradient Descent Techniques17m
Deriving FunkSVD11m
Probabilistic Matrix Factorization10m
1개의 읽기 자료
On Folding-In with Gradient Descent10m
3

3

완료하는 데 4시간 필요

Matrix Factorization (Part 2)

완료하는 데 4시간 필요
2개 동영상 (총 15분), 2 개의 읽기 자료, 6 개의 테스트
2개의 동영상
Programming Matrix Factorization6m
2개의 읽기 자료
Assignment Instructions10m
Intro - Programming Matrix Factorization10m
5개 연습문제
Matrix Factorization Assignment Part l10m
Matrix Factorization Assignment Part ll10m
Matrix Factorization Assignment Part lll10m
Matrix Factorization Quiz8m
SVD Programming Eval Quiz6m
4

4

완료하는 데 2시간 필요

Hybrid Recommenders

완료하는 데 2시간 필요
6개 동영상 (총 96분)
6개의 동영상
Hybrids with Robin Burke16m
Hybridization through Matrix Factorization15m
Matrix Factorization Hybrids with George Karypis17m
Interview with Arindam Banerjee15m
Interview with Yehuda Koren22m

검토

MATRIX FACTORIZATION AND ADVANCED TECHNIQUES의 최상위 리뷰

모든 리뷰 보기

추천 시스템 특화 과정 정보

A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space. This Specialization is designed to serve both the data mining expert who would want to implement techniques like collaborative filtering in their job, as well as the data literate marketing professional, who would want to gain more familiarity with these topics. The courses offer interactive, spreadsheet-based exercises to master different algorithms, along with an honors track where you can go into greater depth using the LensKit open source toolkit. By the end of this Specialization, you’ll be able to implement as well as evaluate recommender systems. The Capstone Project brings together the course material with a realistic recommender design and analysis project....
추천 시스템

자주 묻는 질문

  • 강의 및 과제 이용 권한은 등록 유형에 따라 다릅니다. 청강 모드로 강좌를 수강하면 대부분의 강좌 자료를 무료로 볼 수 있습니다. 채점된 과제를 이용하고 수료증을 받으려면 청강 도중 또는 이후에 수료증 경험을 구매해야 합니다. 청강 옵션이 표시되지 않는 경우:

    • 강좌에서 청강 옵션을 제공하지 않을 수 있습니다. 대신 무료 평가판을 사용하거나 재정 지원을 신청할 수 있습니다.
  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.