About this Course
최근 조회 5,941

다음 전문 분야의 1개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 14시간 필요

권장: 7 hours/week...

영어

자막: 영어

배울 내용

  • Check

    Understand the definitions of simple error measures (e.g. MSE, accuracy, precision/recall).

  • Check

    Evaluate the performance of regressors / classifiers using the above measures.

  • Check

    Understand the difference between training/testing performance, and generalizability.

  • Check

    Understand techniques to avoid overfitting and achieve good generalization performance.

다음 전문 분야의 1개 강좌 중 1번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

완료하는 데 약 14시간 필요

권장: 7 hours/week...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 2시간 필요

Week 1: Diagnostics for Data

For this first week, we will go over the syllabus, download all course materials, and get your system up and running for the course. We will also introduce the basics of diagnostics for the results of supervised learning.

...
6 videos (Total 49 min), 4 readings, 3 quizzes
6개의 동영상
Motivation Behind the MSE8m
Regression Diagnostics: MSE and R²6m
Over- and Under-Fitting6m
Classification Diagnostics: Accuracy and Error11m
Classification Diagnostics: Precision and Recall12m
4개의 읽기 자료
Syllabus10m
Setting Up Your System10m
(Optional) Additional Resources and Recommended Readings10m
Course Materials10m
3개 연습문제
Review: Regression Diagnostics8m
Review: Classification Diagnostics4m
Diagnostics for Data30m
2
완료하는 데 2시간 필요

Week 2: Codebases, Regularization, and Evaluating a Model

This week, we will learn how to create a simple bag of words for analysis. We will also cover regularization and why it matters when building a model. Lastly, we will evaluate a model with regularization, focusing on classifiers.

...
4 videos (Total 35 min), 4 quizzes
4개의 동영상
Model Complexity and Regularization10m
Adding a Regularizer to our Model, and Evaluating the Regularized Model8m
Evaluating Classifiers for Ranking4m
4개 연습문제
Review: Setting Up a Codebase2m
Review: Regularization5m
Review: Evaluating a Model5m
Codebases, Regularization, and Evaluating a Model45m
3
완료하는 데 1시간 필요

Week 3: Validation and Pipelines

This week, we will learn about validation and how to implement it in tandem with training and testing. We will also cover how to implement a regularization pipeline in Python and introduce a few guidelines for best practices.

...
4 videos (Total 24 min), 3 quizzes
4개의 동영상
“Theorems” About Training, Testing, and Validation8m
Implementing a Regularization Pipeline in Python5m
Guidelines on the Implementation of Predictive Pipelines5m
3개 연습문제
Review: Validation4m
Review: Predictive Pipelines6m
Predictive Pipelines20m
4
완료하는 데 2시간 필요

Final Project

In the final week of this course, you will continue building on the project from the first and second courses of Python Data Products for Predictive Analytics with simple predictive machine learning algorithms. Find a dataset, clean it, and perform basic analyses on the data. Evaluate your model, validate your analyses, and make sure you aren't overfitting the data.

...
2 readings, 1 quiz
2개의 읽기 자료
Project Description10m
Where to Find Datasets10m

강사

Avatar

Julian McAuley

Assistant Professor
Computer Science
Avatar

Ilkay Altintas

Chief Data Science Officer
San Diego Supercomputer Center

캘리포니아 샌디에고 대학교 정보

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Python Data Products for Predictive Analytics 전문 분야 정보

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.