About this Course
최근 조회 4,458

다음 전문 분야의 7개 강좌 중 5번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 9시간 필요

권장: 4 weeks of study, 1-2 hours/week...

영어

자막: 영어

다음 전문 분야의 7개 강좌 중 5번째 강좌:

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

유동적 마감일

일정에 따라 마감일을 재설정합니다.

완료하는 데 약 9시간 필요

권장: 4 weeks of study, 1-2 hours/week...

영어

자막: 영어

강의 계획 - 이 강좌에서 배울 내용

1
완료하는 데 3시간 필요

General Steps in Weighting

Weights are used to expand a sample to a population. To accomplish this, the weights may correct for coverage errors in the sampling frame, adjust for nonresponse, and reduce variances of estimators by incorporating covariates. The series of steps needed to do this are covered in Module 1.

...
7 videos (Total 48 min), 7 readings, 7 quizzes
7개의 동영상
Quantities to Estimate8m
Goals of Estimation6m
Statistical Interpretation of Estimates10m
Coverage Problems5m
Improving Precision3m
Effects of Weighting on SEs2m
7개의 읽기 자료
Class notes + additional reading10m
Class notes10m
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes10m
7개 연습문제
Introductory quiz on weights6m
Quantities4m
Goals6m
Interpretation6m
Coverage4m
Improving precision6m
Effects on SEs6m
2
완료하는 데 2시간 필요

Specific Steps

Specific steps in weighting include computing base weights, adjusting if there are cases whose eligibility we are unsure of, adjusting for nonresponse, and using covariates to calibrate the sample to external population controls. We flesh out the general steps with specific details here.

...
6 videos (Total 44 min), 6 readings, 5 quizzes
6개의 동영상
Base Weights8m
Nonresponse Adjustments7m
Response Propensities4m
Tree algorithms10m
Calibration5m
6개의 읽기 자료
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes10m
5개 연습문제
Overview6m
Base weights6m
Nonresponse4m
Trees4m
Calibration6m
3
완료하는 데 2시간 필요

Implementing the Steps

Software is critical to implementing the steps, but the R system is an excellent source of free routines. This module covers several R packages, including sampling, survey, and PracTools that will select samples and compute weights.

...
6 videos (Total 64 min), 5 readings, 4 quizzes
6개의 동영상
Base Weights10m
More on Base Weights13m
Nonresponse Adjustments13m
Examples of Calibration7m
Software for Poststratification14m
5개의 읽기 자료
Class Notes10m
Class Notes + Software10m
Class Notes10m
Class Notes + Software for propensity classes10m
Class Notes + Software for calibration10m
4개 연습문제
Software4m
Quiz on base weights8m
Quiz on nonresponse adjustments6m
Quiz on calibration and poststratification8m
4
완료하는 데 2시간 필요

Imputing for Missing Items

In most surveys there will be items for which respondents do not provide information, even though the respondent completed enough of the data collection instrument to be considered "complete". If only the cases with all items present are retained when fitting a model, quite a few cases may be excluded from the analysis. Imputing for the missing items avoids dropping the missing cases. We cover methods of doing the imputing and of reflecting the effects of imputations on standard errors in this module.

...
6 videos (Total 46 min), 5 readings, 5 quizzes
6개의 동영상
Means and hotdeck7m
Regression Imputation6m
Effect on Variances9m
mice R package4m
mice example10m
5개의 읽기 자료
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes10m
Class Notes + mice R package10m
5개 연습문제
Reasons for imputing6m
Means and hot deck4m
Regression imputation8m
Effects on variances8m
Imputation software12m
완료하는 데 13분 필요

Summary of Course 5

We briefly summarize the methods of weighting and imputation that were covered in Course 5.

...
1 video (Total 3 min), 1 reading
1개의 동영상
1개의 읽기 자료
Class Notes10m
3.8
21개의 리뷰Chevron Right

Dealing With Missing Data의 최상위 리뷰

대학: MMJun 5th 2017

This course quite help to get as much reliable data as possible for any survey.

강사

Avatar

Richard Valliant, Ph.D.

Research Professor
Joint Program in Survey Methodology

메릴랜드 대학교 칼리지파크 캠퍼스 정보

The University of Maryland is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 37,000 students, 9,000 faculty and staff, and 250 academic programs. Its faculty includes three Nobel laureates, three Pulitzer Prize winners, 47 members of the national academies and scores of Fulbright scholars. The institution has a $1.8 billion operating budget, secures $500 million annually in external research funding and recently completed a $1 billion fundraising campaign. ...

Survey Data Collection and Analytics 전문 분야 정보

This specialization covers the fundamentals of surveys as used in market research, evaluation research, social science and political research, official government statistics, and many other topic domains. In six courses, you will learn the basics of questionnaire design, data collection methods, sampling design, dealing with missing values, making estimates, combining data from different sources, and the analysis of survey data. In the final Capstone Project, you’ll apply the skills learned throughout the specialization by analyzing and comparing multiple data sources. Faculty for this specialisation comes from the Michigan Program in Survey Methodology and the Joint Program in Survey Methodology, a collaboration between the University of Maryland, the University of Michigan, and the data collection firm Westat, founded by the National Science Foundation and the Interagency Consortium of Statistical Policy in the U.S. to educate the next generation of survey researchers, survey statisticians, and survey methodologists. In addition to this specialization we offer short courses, a summer school, certificates, master degrees as well as PhD programs....
Survey Data Collection and Analytics

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.