Chevron Left
Machine Learning Foundations: A Case Study Approach(으)로 돌아가기

워싱턴 대학교의 Machine Learning Foundations: A Case Study Approach 학습자 리뷰 및 피드백

4.6
별점
12,749개의 평가
3,045개의 리뷰

강좌 소개

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

최상위 리뷰

SZ
2016년 12월 19일

Great course!\n\nEmily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.

BL
2016년 10월 16일

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

필터링 기준:

Machine Learning Foundations: A Case Study Approach의 2,966개 리뷰 중 251~275

교육 기관: Fakrudeen A A

2018년 8월 5일

Excellent course and highly recommended - covers fundamentals, TF-IDF, cosine. jaccardian similarities, recommender systems (precision/recall, AUC), deep learning via transfer learning (not having to explicitly build a model for the problem).

Exercises could be done in some tool which is common across industry.

교육 기관: Bola M

2016년 7월 19일

Awesome course! Only gives an introduction into the Machine Learning topics but does it well. As a Technical PM in the software industry, this was enough depth for me to understand the basics of machine learning algorithms. Also has good hands-on tutorials with Python to implement the algorithms which is great.

교육 기관: Jorge H

2016년 11월 6일

Excellent course!!... It has been the best online course so far. I really enjoyed the Use Case approach, and got really excited with the fact that –although being an introductory course- I got really a good intuition and hands-on experience about use of machine learning for real applications.

Congratulations!!

교육 기관: Carol V

2017년 2월 27일

This course helped me develop a good understanding of complex machine learning concepts.

The tools were easy to use and helped me learn quickly. Unlike other programming classes I've tried in Coursera, I did not have to deal with programming environment related problems. I learnt important python skills also.

교육 기관: Pattadon N

2021년 9월 11일

T​his course will you the important foundation of machine learning and learn how to use the machine learing models on the real world problems. But, the contents in the video are a little bit old, however they are still great. I like both two professors a lot to have some funny moments and that's not boring.

교육 기관: Baranitharan S

2018년 4월 14일

The course sets a strong foundation for someone who wish to specialise in the AI and ML space. The course content is easy for a beginner with a very little or no (you gotta believe it) software coding background. The instructor are awesome and help you to go thru the course with ease and not getting bored.

교육 기관: Srividya N

2017년 11월 1일

There is so much of flexibility. It is so cool and so interesting... I could complete this complex course so easily with some of the key activities like below:

Exercise videos

taking quiz questions multiple times with no penalty

simple English and explanation of complex information in simple and easy terms

교육 기관: Waleed O

2017년 3월 4일

this is course is very good for a beginner who wants to know what is machine learning , why we want this , what is its application .

also you will understand many algorithms used to manipulate data to do very cool applications and you will do this yourself .

they made it very easy to understand , thank you .

교육 기관: Xiangwei C

2016년 7월 8일

It is a very well structured and effective course. I really learned a lot of machine learning techniques that I can use immediately. Both instructors did great job explaining the concepts and algorithms. Very powerful python tools are introduced, and I love them! Definitely worth the money that I paid for!

교육 기관: Gaurav S

2020년 5월 20일

Emily and Carlos have done a great job in preparing this course. This course is for anyone who doesnt have any background of Machine learning. The hosts have taught the course by implementing a practical approach. I have learnt a lot out of this course and i hope to complete the remainder of the courses.

교육 기관: Chengyu H

2016년 9월 16일

It is a good introduction to machine learning with cases. It explains all the big concepts in a high level, and uses all the out of box functions of graphlab to implement those ideas. Do not expect to have super detailed understanding of all the algeralisms and step by step how to do it from scratch.

교육 기관: Aashritha K

2020년 8월 30일

I found it very useful in terms of getting used to python programming, jupyter notebook and machine learning concepts. The case study approach gave me an opportunity to immediately apply the machine learning concepts learnt in the course. The course structure is very well organised to do the same.

교육 기관: Stephen M

2017년 12월 13일

Great SURVEY of use cases and methods in machine learning and an opportunity to familiarize yourself with Jupyter notebooks, Python and GraphLab Create. This is an orientation to machine learning; none of the use cases or methods are covered in great depth (that comes in the courses that follow)

교육 기관: Deepak

2016년 8월 23일

This course gives overview of what we are going o learn ahead in machine learning course. Carlos and Emily they both explain stuffs in very detail manner. IN fact it so much fun to learn when you understan thing and specially these cool stuff i hope to see some more courses on this in future. :)

교육 기관: Shuai S

2017년 12월 5일

I think this course is a quite cool fundamental Introduction. After finishing the course, you can do real things like building a MPC (Model Prediction Control) system using regression technique and so on. I fully encourage you guys joint this course for a getting started step into the ML field.

교육 기관: Aislyn N R

2016년 8월 26일

Very well presented! The tools are explained and provided in a way for genuine learning and application. The jupyter notebook assignments allow one to jump into the material, while taking detailed notes along the learning 'journey'. I am excited for all the other courses in this specialization!

교육 기관: Partha P M

2016년 12월 20일

Learned iPython Notebook which is good for Machine Learning.Helped me to understand the basics of all the ML techniques and helped me understand where to apply which ML model. This course will not teach u ML in depth , for in depth knowledge u have to take other courses in the specialisation.

교육 기관: Yogeshwar G

2017년 4월 28일

It was amazing! I cannot describe the feelings one experiences when playing with the machine learning codes. My only complaint is that I would have wanted more in the neural network/deep learning module, but I guess there will be another specialization course for that. Thank you Professors!

교육 기관: Willismar M C

2016년 8월 31일

It was a great course, showing the general applications of machine learning and great tutorial in how to implement the solutions without the technical and theoretical part of it. Also the use of IPhyton give a lot of flexibility to the material and the exercises. I really enjoyed. Thank you

교육 기관: Anindya S

2016년 1월 2일

Dr. Carlos Guestrin and Dr. Emily Fox are amazing. Needless to say, their way of teaching is absolutely brilliant and fun to learn, concepts which took me few days to learn now takes an hour or so, this is primarily due to their mastery on the subject matter and their lucid way of teaching.

교육 기관: Roberto C

2015년 10월 22일

I really liked this course (I have one week to finish, but I have enough data to judge). The professors are really pedagogic and the examples are really clear. The only thing is that I would rather have more difficult programs, I feel like that I do not have much to think to pass the tests.

교육 기관: Phuong N

2017년 6월 23일

I really love this course. After the first course i get the basic background machine learning. I can see everything that machine learning can apply. The course just easy to understand and give me one years trial graphlab lib for python which is useful for me can access machine learning .

교육 기관: Abhijit P

2017년 7월 17일

Excellent course to get you started with machine learning. Both the presenters bring a in lot of their expertise and experience to make this course fun and engaging. Lot of examples are shared which help to understand the topics in a much better way. This training is really top notch. I

교육 기관: Khandaker S M

2020년 6월 11일

Introduces you to this really powerful python library 'graphlab'. As a beginner, sometimes I found it hard to solve the programming problems. Also there should've been a video on how to install graphlab. I think this was the hardest part :v A really good machine learning course overall

교육 기관: Wan S L

2016년 6월 12일

One of the best courses I have learnt from Coursera. I love the way the lectures are presented, and how great our teachers guide us through it! I love the materials given, the projects and assignments, and the fun part interacting with teacher. Overall, five stars! Highly recommented!