학생용
Chevron Left
Machine Learning Foundations: A Case Study Approach(으)로 돌아가기

워싱턴 대학교의 Machine Learning Foundations: A Case Study Approach 학습자 리뷰 및 피드백

4.6
별점
12,075개의 평가
2,892개의 리뷰

강좌 소개

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

최상위 리뷰

SZ
2016년 12월 19일

Great course!\n\nEmily and Carlos teach this class in a very interest way. They try to let student understand machine learning by some case study. That worked well on me. I like this course very much.

BL
2016년 10월 16일

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

필터링 기준:

Machine Learning Foundations: A Case Study Approach의 2,804개 리뷰 중 2626~2650

교육 기관: Christopher W

2016년 3월 6일

Pretty high level overview. I guess it's necessary to give a roadmap for where the concentration leads, but I wonder if each lesson couldn't have been added in its respective module, or if at least the Foundations Module couldn't be shortened a little - or alternatively made a bit more challenging. I'm on the first real module now and the change in difficulty is quite significant.

교육 기관: Sander v d O

2016년 4월 1일

This course is for you if you really don't know anything about Machine Learning and nothing about Python. If you do know something about it, look for a different course.

I learned the most from lesson 5 and 6 about recommenders and deep learning because I knew nothing about these subjects.

The programming exercises are disappointing: just cut and paste. I found this demotivating.

교육 기관: Sean I

2017년 11월 5일

I wish they used open source tools for this. I will not be paying for a GraphLab account nor do I see myself using it in the future. I felt less inclined to strain over learning the API and was unused by the technologies. Other than that the course is pretty interesting as I was able to apply some cool data analysis using ML practices I've learned in other Coursera courses.

교육 기관: James H

2020년 7월 1일

The course was good, and the instructors did a good job. There don't seem to be any mentors in the forums who are helping, and the library used for the exercises was changed from the one in the lectures. The specialization seems to have been abandoned before they published courses 5 and 6, so ignore every time they talk about how great the capstone project is going to be!!

교육 기관: 周玮晨

2018년 6월 28일

Lectures are great. Unfortunately, i can' t install graphlab create on my windows 10 labtap.I wasted two whole day on it!!!!! I tried every methods google told me, all fail or with bugs. I think pandas and sklearn are far more user friendly.不建议大陆使用windows的朋友尝试安装graphlab create,标准安装方式即使用了VPS也网络链接失败,用anaconda安装的话,anaconda3可以安装,但是没有canvas功能,anaconda2各种奇怪报错。搞了两天失败,我还是用sklearn。

교육 기관: S M R A

2020년 5월 9일

This course needs to be updated. Windows don't support TuriCreate or Graphlab. Because it works on python 2. But now python 3.8 has come and TuriCreate doesn't work in it either. So, I had to use Ubuntu in my virtual box to work on the assignments. The course wasn't bad. But if they update the course, it will be a great one for beginners in machine learning.

교육 기관: Katya H

2016년 4월 26일

I think it was a good introductory course. However, I think it was too simple: assignments required no more than copy+paste from the lectures.

I understand the primary goal is to hook people up on how good graphlabs is, but I'd rather leaarn numpy, sklearn and other widely available tools. At least show both in the leactures. Please :)

교육 기관: Iker U

2017년 4월 11일

This course presents an overview of different machine learning tools but I rather prefer starting from the second course were more specific competencies are given. I believe that in courses like this the contents are to sparse.

It would serve as an introduction. But the contents of week 4 and 5 are not even in the specialization!

교육 기관: Bryan D

2019년 9월 25일

The course teaches a a lot of information and explains everything from a beginners POV which is great. I only have 2 issues with this course, the use of proprietary software instead of all open source software and NO CONTINUED SUPPORT for about 3 years since the course has been out. Either update the specialization or cancel it.

교육 기관: Paulius J

2020년 7월 27일

Wanted a course on ML. Could not find anything except this. Therefore decided to take it. However not so sure Turi Create/Graphlab is the best option (had installing issues as a Python beginer). Was it worth to use it instead of Scikit learn? Also I would expect closer connection between quiz tasks and study material.

교육 기관: Salvador V M

2017년 11월 4일

Good for start in machine learning concepts. Good because they use Jupyter Notebook an python (they use python 2, it would be better 3). But I don't like much the graphlab library for data frames. And also the quizzes are a bit difficult. You have no the whole information in the documentation to solve them.

교육 기관: Romain R

2017년 4월 10일

The content is really good, well explained=> 5 stars, nothing to add.

Why the 3 stars then ? Graphlab. If you use the pydata stack, as it is said to be possible in every assignments, you get stuck on the quizz due to variations on data and the algorithm used, so you can't really get quite the same answers.

교육 기관: Vivian Y Q

2018년 5월 31일

Videos were too short to go into details. Too much reliance on the package they development themselves, though I appreciated the simplicity, I don't get to learn about a lot of technical details. So you know how to run a image retrieval model without knowing what are the deep features, for example.

교육 기관: Troy D

2020년 2월 5일

Good course, learned a lot of basics. I think this course is rather old though and getting a lot of the required software up and running required a lot of work since there are much newer versions available now. I found that I had to do a little extra to get the older packages working in Jupiter.

교육 기관: Aleksandar S

2016년 5월 25일

The course content is great. It gives overview on what is going to be learned in details in the next courses. Considering that it is an introductory course and the fact that it utilizes the GraphLab library as tool, I believe it is overpriced compared to the other courses of the specialization.

교육 기관: Yaniv S

2017년 1월 15일

The whole eco-system is based on Graphlab create which is not very commonly used in the industry. The "Programming assignments" are very much like the exercise done in the videos - so no real thought and effort were needed. The Deep learning part is really bad thought and bad examined.

교육 기관: Eric J

2016년 7월 12일

The enthusiasm of the instructors was the best thing about this class. But I really wanted a more rigorous methodology - and didn't really get it here. But it was an alright introduction to machine learning but not enough if you want to know what makes the 'black box' work.

교육 기관: Paulo S B d O F

2016년 9월 5일

Pros:

(1) Teachers know what they are talking.

(2) They are energetic and funny.

Cons:

(1) The course uses proprietary and expensive tool.

(2) The course is too simplistic.

(3) The teachers, although they know what they are talking about, they aren't very good at teaching.

교육 기관: David K

2016년 3월 1일

I think that the course is redundant, it is to general, trying to capture to much, and using a commercial program tool that's doing to much behind the scene.

The second course in the specialization is really great though and you wont miss anything if you skip ahead

교육 기관: Varun J

2015년 9월 24일

A lot of problems with software installations. But, the professors for this class seem to be very passionate about the course and they teach well. If not for a lot of problems faced during software installations(which is still not resolved), would have given 5 stars

교육 기관: Michael C

2016년 4월 10일

Really just an overview of the topics to be explained in detail afterwards.

Big plus for the use of python + notebooks but otherwise, if one is interested just in the overview and not in all the specialization, maybe the Andrew NG course is more detailed.

교육 기관: Bernardo C

2016년 6월 8일

El curso tiene mucho potencial, pero hay que afinarlo.

Pienso que los vídeos deben ser reeditados. Tienen errores y conceptos confusos. Deberían ser tan claros como para lograr tomar buenos apuntes y usarlos en las tareas. Las tareas son casi mecánicas.

교육 기관: Rishi H

2019년 6월 11일

Content and material is good and the trainers are good. Only issue i found is course assignments are heavily dependent on Sframes and graphlab which does not work most of the times.,they should go with panda libraries which is easily accessible.

교육 기관: Aman S

2018년 6월 14일

The worst thing about this course is graphlab. Trying to run it since last 10 days with the help of every available online resources, but in vain. There are many flaws in graphlab. I tried a hundred times to view images in graphlab, but in vain.

교육 기관: Juarez B

2017년 1월 12일

This course introduces the key topics of Machine Learning, but the math behind the algorithms is not explained and the programming exercises are too easy. Unfortunately, it also relies heavily on graphlab instead of using open source software.