If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning.
제공자:


이 강좌에 대하여
You should take the first 2 courses of the TensorFlow Specialization and be comfortable coding in Python and understanding high school-level math.
배울 내용
Build natural language processing systems using TensorFlow
Process text, including tokenization and representing sentences as vectors
Apply RNNs, GRUs, and LSTMs in TensorFlow
Train LSTMs on existing text to create original poetry and more
귀하가 습득할 기술
You should take the first 2 courses of the TensorFlow Specialization and be comfortable coding in Python and understanding high school-level math.
제공자:

deeplearning.ai
Founded by Andrew Ng, DeepLearning.AI is an education technology company that develops a global community of AI talent.
강의 계획 - 이 강좌에서 배울 내용
Sentiment in text
The first step in understanding sentiment in text, and in particular when training a neural network to do so is the tokenization of that text. This is the process of converting the text into numeric values, with a number representing a word or a character. This week you'll learn about the Tokenizer and pad_sequences APIs in TensorFlow and how they can be used to prepare and encode text and sentences to get them ready for training neural networks!
Word Embeddings
Last week you saw how to use the Tokenizer to prepare your text to be used by a neural network by converting words into numeric tokens, and sequencing sentences from these tokens. This week you'll learn about Embeddings, where these tokens are mapped as vectors in a high dimension space. With Embeddings and labelled examples, these vectors can then be tuned so that words with similar meaning will have a similar direction in the vector space. This will begin the process of training a neural network to udnerstand sentiment in text -- and you'll begin by looking at movie reviews, training a neural network on texts that are labelled 'positive' or 'negative' and determining which words in a sentence drive those meanings.
Sequence models
In the last couple of weeks you looked first at Tokenizing words to get numeric values from them, and then using Embeddings to group words of similar meaning depending on how they were labelled. This gave you a good, but rough, sentiment analysis -- words such as 'fun' and 'entertaining' might show up in a positive movie review, and 'boring' and 'dull' might show up in a negative one. But sentiment can also be determined by the sequence in which words appear. For example, you could have 'not fun', which of course is the opposite of 'fun'. This week you'll start digging into a variety of model formats that are used in training models to understand context in sequence!
Sequence models and literature
Taking everything that you've learned in training a neural network based on NLP, we thought it might be a bit of fun to turn the tables away from classification and use your knowledge for prediction. Given a body of words, you could conceivably predict the word most likely to follow a given word or phrase, and once you've done that, to do it again, and again. With that in mind, this week you'll build a poetry generator. It's trained with the lyrics from traditional Irish songs, and can be used to produce beautiful-sounding verse of it's own!
검토
NATURAL LANGUAGE PROCESSING IN TENSORFLOW의 최상위 리뷰
Excellent. Isn't Laurence just great! Fantastically deep knowledge, easy learning style, very practical presentation. And funny! A pure joy, highly relevant and extremely useful of course. Thank you!
Great course for anyone interested in NLP! This course focuses on practical learning instead of overburdening students with theory. Would recommend this to every NLP beginner/enthusiast out there!!
These classes are excelling practical examples of how to use tensorflow for various problem types. My only objection is they are slightly light on the actual, behind the scenes, math and intuition.
The course is great, but the assignments were not designed as well as the ones in the previous courses. I believe that a careful design of the assignments could significant improve the experience.
DeepLearning.AI TensorFlow 개발자 전문 자격증 정보
TensorFlow is one of the most in-demand and popular open-source deep learning frameworks available today. The DeepLearning.AI TensorFlow Developer Professional Certificate program teaches you applied machine learning skills with TensorFlow so you can build and train powerful models.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 수료 과정을 구독하면 무엇을 이용할 수 있나요?
강좌를 수료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.