An introduction to data integration and statistical methods used in contemporary Systems Biology, Bioinformatics and Systems Pharmacology research. The course covers methods to process raw data from genome-wide mRNA expression studies (microarrays and RNA-seq) including data normalization, differential expression, clustering, enrichment analysis and network construction. The course contains practical tutorials for using tools and setting up pipelines, but it also covers the mathematics behind the methods applied within the tools. The course is mostly appropriate for beginning graduate students and advanced undergraduates majoring in fields such as biology, math, physics, chemistry, computer science, biomedical and electrical engineering. The course should be useful for researchers who encounter large datasets in their own research. The course presents software tools developed by the Ma’ayan Laboratory (http://labs.icahn.mssm.edu/maayanlab/) from the Icahn School of Medicine at Mount Sinai, but also other freely available data analysis and visualization tools. The ultimate aim of the course is to enable participants to utilize the methods presented in this course for analyzing their own data for their own projects. For those participants that do not work in the field, the course introduces the current research challenges faced in the field of computational systems biology.
제공자:


이 강좌에 대하여
학습자 경력 결과
50%
25%
25%
학습자 경력 결과
50%
25%
25%
제공자:

마운트사이나이 아이칸 의과대학
The Icahn School of Medicine at Mount Sinai, in New York City is a leader in medical and scientific training and education, biomedical research and patient care.
강의 계획 - 이 강좌에서 배울 내용
Course Overview and Introductions
The 'Introduction to Complex Systems' module discusses complex systems and leads to the idea that a cell can be considered a complex system or a complex agent living in a complex environment just like us. The 'Introduction to Biology for Engineers' module provides an introduction to some central topics in cell and molecular biology for those who do not have the background in the field. This is not a comprehensive coverage of cell and molecular biology. The goal is to provide an entry point to motivate those who are interested in this field, coming from other disciplines, to begin studying biology.
Topological and Network Evolution Models
In the 'Topological and Network Evolution Models' module, we provide several lectures about a historical perspective of network analysis in systems biology. The focus is on in-silico network evolution models. These are simple computational models that, based of few rules, can create networks that have a similar topology to the molecular networks observed in biological systems.
Types of Biological Networks
The 'Types of Biological Networks' module is about the various types of networks that are typically constructed and analyzed in systems biology and systems pharmacology. This lecture ends with the idea of functional association networks (FANs). Following this lecture are lectures that discuss how to construct FANs and how to use these networks for analyzing gene lists.
Data Processing and Identifying Differentially Expressed Genes
This set of lectures in the 'Data Processing and Identifying Differentially Expressed Genes' module first discusses data normalization methods, and then several lectures are devoted to explaining the problem of identifying differentially expressed genes with the focus on understanding the inner workings of a new method developed by the Ma'ayan Laboratory called the Characteristic Direction.
검토
NETWORK ANALYSIS IN SYSTEMS BIOLOGY의 최상위 리뷰
Various analytical approaches for network analysis are very well explained. Also, have explained the working of different bioinformatics or network-based tools and software.
It was a good review of various tools, but maybe it was to many tools. I think it would be nice to show a smaller number of tools, but make more reproducible showcases
Excellent course to get deep into the data analysis of system biology experimentation.
Its really a very interesting course ,and very informative
Systems Biology and Biotechnology 특화 과정 정보
Design systems-level experiments using appropriate cutting edge techniques, collect big data, and analyze and interpret small and big data sets quantitatively.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
Is financial aid available?
강좌를 수료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.