Observation of near-Earth outer space is an important task for astronomers and scientists at the present time. This task is to determine the coordinate and non-coordinate characteristics of artificial space objects. According to data obtained, a catalogue of objects is created, which should be maintained and updated. For this, optical means (telescopes) can be involved. The data from these means should be processed in order to obtain information about objects in space.
제공자:
Processing of Space Monitoring Information
모스크바 물리 기술원이 강좌에 대하여
Learners are expected to know basic mathematical analysis, linear algebra, information system theory, mathematical methods of optimization.
Learners are expected to know basic mathematical analysis, linear algebra, information system theory, mathematical methods of optimization.
제공자:

모스크바 물리 기술원
Московский физико-технический институт (Физтех) является одним из ведущих вузов страны и входит в основные рейтинги лучших университетов мира. Институт обладает не только богатой историей – основателями и профессорами института были Нобелевские лауреаты Пётр Капица, Лев Ландау и Николай Семенов – но и большой научно-исследовательской базой.
강의 계획 - 이 강좌에서 배울 내용
Week 1. Image processing pipeline
The lectures of the first week cover the following stages of space monitoring information processing: background suppression; detection of isolated groups of bright pixels (areas); estimation of shape parameters of extracted bright areas for classification as stars or tracks; estimation of positions of detected stars; estimation of parameters of detected tracks; astrometric reduction of the image; photometric reduction.
Week 2. Correlation methods for determining the mutual displacement of images
Second week discusses a method for determining the mutual displacement of images based on the presence of spatial correlation of the observation background. This method can be used in a situation when the survey is carried out in such a way that the object does not go beyond the field of view of the telescope during the time between two successive frames, and these frames have a significant intersection in absolute angular space.
Week 3. Spatiotemporal methods of filtering observation background
Lectures of the third week describe spatio-temporal methods of filtering the observation background. General principles of these methods are considered. The most commonly used methods are described in detail: the simplest nonparametric time filtering algorithm, adaptive autoregression algorithm and algorithm of calculation filter coefficients as an explicit shift function.
Week 4. Extraction of spatially resolved point objects from digital image
The fourth week is dedicated to selecting and classifying allowed point objects in a digital image. The general limitations of using the proposed methods are considered. The general structure of the optimal algorithm is described. A method for detecting a single object in a fixed window is proposed. Based on this method, the case of determination the decision-making statistics in the image reference points for a symmetric PSF, conjugated with pixel dimensions, is considered. A suboptimal algorithm for detecting objects at image reference points is proposed.
자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 수료증을 구매하면 무엇을 이용할 수 있나요?
Is financial aid available?
강좌를 수료하면 대학 학점을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.