This course will introduce the learner to network analysis through tutorials using the NetworkX library. The course begins with an understanding of what network analysis is and motivations for why we might model phenomena as networks. The second week introduces the concept of connectivity and network robustness. The third week will explore ways of measuring the importance or centrality of a node in a network. The final week will explore the evolution of networks over time and cover models of network generation and the link prediction problem.
제공자:
이 강좌에 대하여
배울 내용
Represent and manipulate networked data using the NetworkX library
Analyze the connectivity of a network
Measure the importance or centrality of a node in a network
Predict the evolution of networks over time
귀하가 습득할 기술
- Graph Theory
- Network Analysis
- Python Programming
- Social Network Analysis
제공자:

미시건 대학교
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
강의 계획표 - 이 강좌에서 배울 내용
Why Study Networks and Basics on NetworkX
Module One introduces you to different types of networks in the real world and why we study them. You'll learn about the basic elements of networks, as well as different types of networks. You'll also learn how to represent and manipulate networked data using the NetworkX library. The assignment will give you an opportunity to use NetworkX to analyze a networked dataset of employees in a small company.
Network Connectivity
In Module Two you'll learn how to analyze the connectivity of a network based on measures of distance, reachability, and redundancy of paths between nodes. In the assignment, you will practice using NetworkX to compute measures of connectivity of a network of email communication among the employees of a mid-size manufacturing company.
Influence Measures and Network Centralization
In Module Three, you'll explore ways of measuring the importance or centrality of a node in a network, using measures such as Degree, Closeness, and Betweenness centrality, Page Rank, and Hubs and Authorities. You'll learn about the assumptions each measure makes, the algorithms we can use to compute them, and the different functions available on NetworkX to measure centrality. In the assignment, you'll practice choosing the most appropriate centrality measure on a real-world setting.
Network Evolution
In Module Four, you'll explore the evolution of networks over time, including the different models that generate networks with realistic features, such as the Preferential Attachment Model and Small World Networks. You will also explore the link prediction problem, where you will learn useful features that can predict whether a pair of disconnected nodes will be connected in the future. In the assignment, you will be challenged to identify which model generated a given network. Additionally, you will have the opportunity to combine different concepts of the course by predicting the salary, position, and future connections of the employees of a company using their logs of email exchanges.
검토
- 5 stars73.95%
- 4 stars20.01%
- 3 stars4.09%
- 2 stars1%
- 1 star0.92%
APPLIED SOCIAL NETWORK ANALYSIS IN PYTHON의 최상위 리뷰
I loved this course. It was well taught and had excellent problem sets and quizzes to internalize the learning. The material is very relevant to the market today. I highly recommend it.
I found it hard sometimes to understand the concepts but this gave me quite an introduction on social network analysis and encouraged me to learn more about them.
This course is a excellent introduction to social network analysis. Learnt a lot about how social network works. Anyone learning Machine Learning and AI should definitely take this course. It's good.
It was an easy introductory course that is well structured and well explained. Took me roughly a weekend and I thoroughly enjoyed it. Hope the professor follows up with more advanced material.
Python과 함께하는 응용 데이터 과학 특화 과정 정보
The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data.

자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 전문 분야를 구독하면 무엇을 이용할 수 있나요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.