이 강좌에 대하여

최근 조회 58,438

학습자 경력 결과

33%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

14%

가 이 강좌를 통해 확실한 경력상 이점을 얻음
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 5개 강좌 중 4번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
완료하는 데 약 5시간 필요
영어
자막: 영어

배울 내용

  • Identify strengths and weaknesses in experimental designs

  • Learn novel solutions for managing data pulls

  • Describe common pitfalls in communicating data analyses

  • Understand a typical day in the life of a data analysis manager

귀하가 습득할 기술

StatisticsData ScienceData AnalysisData Management

학습자 경력 결과

33%

가 이 강좌를 수료한 후 새로운 커리어를 시작함

14%

가 이 강좌를 통해 확실한 경력상 이점을 얻음
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 5개 강좌 중 4번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
완료하는 데 약 5시간 필요
영어
자막: 영어

제공자:

존스홉킨스대학교 로고

존스홉킨스대학교

강의 계획 - 이 강좌에서 배울 내용

콘텐츠 평가Thumbs Up91%(3,399개의 평가)Info
1

1

완료하는 데 5시간 필요

Introduction, the perfect data science experience

완료하는 데 5시간 필요
22개 동영상 (총 159분), 10 개의 읽기 자료, 6 개의 테스트
22개의 동영상
Data science in the ideal versus real life Part 14m
Data science in the ideal versus real life Part 23m
Examples7m
Machine Learning vs. Traditional Statistics Part 114m
Machine Learning vs. Traditional Statistics Part 23m
Managing the Data Pull11m
Experimental design and observational analysis10m
Causality part 18m
Causality Part 29m
What Can Go Wrong?: Confounding5m
A/B Testing9m
Sampling bias and random sampling5m
Blocking and adjustment11m
Multiplicity6m
Effect size, significance, & modeling7m
Comparison with benchmark effects4m
Negative controls5m
Non-significance5m
Estimation Target is Relevant10m
Report writing8m
Version control4m
10개의 읽기 자료
Pre-Course Survey10m
Course structure10m
Grading10m
The data pull is clean10m
The experiment is carefully designed10m
The experiment is carefully designed, things to do10m
Results of analyses are clear10m
The decision is obvious10m
The analysis product is awesome10m
Post-Course Survey10m
6개 연습문제
The Data Pull is Clean10m
The experiment is carefully designed principles10m
The experiment is carefully designed, things to do10m
Results of analyses are clear8m
The Decision is Obvious10m
The analysis product is awesome10m

검토

DATA SCIENCE IN REAL LIFE의 최상위 리뷰

모든 리뷰 보기

Executive Data Science 특화 과정 정보

Assemble the right team, ask the right questions, and avoid the mistakes that derail data science projects. In four intensive courses, you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You’ll get a crash course in data science so that you’ll be conversant in the field and understand your role as a leader. You’ll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You’ll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you’ll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects....
Executive Data Science

자주 묻는 질문

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

  • 이 강좌는 대학 학점을 제공하지 않지만, 일부 대학에서 선택적으로 강좌 수료증을 학점으로 인정할 수도 있습니다. 자세한 내용은 해당 기관에 문의하세요. Coursera의 온라인 학위Mastertrack™ 수료증은 대학 학점을 취득할 기회를 제공합니다.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.