Chevron Left
Regression Models(으)로 돌아가기

존스홉킨스대학교의 Regression Models 학습자 리뷰 및 피드백

3,249개의 평가
557개의 리뷰

강좌 소개

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....

최상위 리뷰

2017년 12월 16일

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.

2017년 1월 31일

It really helped me to have a better understanding of these Regression Models. However, I've noticed that there is a video recording repeated: Week 3, Model Selection. Part 3 is included in Part 2.

필터링 기준:

Regression Models의 537개 리뷰 중 376~400

교육 기관: Federico A V R

2017년 9월 13일

Would love to see more hands on practical explanations rather tan mostly slides.

Content is great though!

교육 기관: Brian F

2017년 8월 15일

This a challenging course, overall I think it was good, but the material could be a bit better presented.

교육 기관: Chonlatit P

2018년 8월 18일

Love this course. teach me to understand Linear Regression more, especially swirl class is great.

교육 기관: Shakti P S

2016년 2월 29일

Good course. Prof. Caffo is a great teacher! Hope to see an advanced version of RegMods soon!

교육 기관: Freddie K

2017년 7월 9일

Really good! All the pieces from the previous courses start to come together into a whole.

교육 기관: Billy J

2016년 4월 7일

Videos were very difficult to follow along with. Overall, I learned a good amount though.

교육 기관: Andrea G

2021년 1월 10일

A very good and comprehensive introduction to Regression Models with practical exercises.

교육 기관: B S

2018년 7월 2일

Nice course. It would however be better to include a summary how to approach an analysis.

교육 기관: Nigel M

2017년 9월 18일

Good introduction to regressions and the process of applying regression analysis to data.

교육 기관: Luiz E B J

2019년 11월 26일

The content is to long, maybe would be interesting split the content in other modules.

교육 기관: Deleted A

2019년 3월 11일

Great course, but please check those subtitles that are occasionally completely off!

교육 기관: Andrea S

2017년 2월 25일

Very good material but often too fragmentend/messy. The notes would need re-writing.

교육 기관: Abrahan G U Ñ

2016년 2월 10일

It is a great introductory course into Regression analysis. I highly recommend it!

교육 기관: Daniel J R

2018년 12월 19일

Quite practical. It does encourage one to follow-up with a more advanced course.

교육 기관: Ravi V

2018년 10월 12일

Overall a good course. But I was expecting more in depth covering of the topics.

교육 기관: César A C

2018년 2월 3일

Un curso bastante completo, aunque un pondría más ejemplos en la sección de GLM.

교육 기관: Scipione S

2020년 7월 14일

I suggest to revie some videos. There is some repetition, especially in week 3.

교육 기관: Marijus B

2020년 4월 28일

swirl exercises needs to be fixed, could not complete it because of the bug

교육 기관: BIBHUTI B P

2017년 7월 24일

Wonderful experience of assimilating the techniques and tricks in this mod

교육 기관: Sudheer P

2016년 12월 28일

This is a great course. The content clearly explains the regression model.

교육 기관: Koen V

2019년 9월 23일

The explanation of the right answers from the quiz were quite handy!

교육 기관: Humberto R

2018년 2월 13일

Great course. My prefered so far in the data science specialization

교육 기관: Mingda W

2018년 6월 5일

Great, but need more examples and projects to practice the skills.

교육 기관: antonio q

2018년 3월 21일

to me the more challenging course, well done though, thanks a lot

교육 기관: Hariharan D

2017년 9월 11일

Intuitive course, liked it. Technical equations are challenging.