이 강좌에 대하여

최근 조회 108,793

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

다음 특화 과정의 1개 강좌 중 1번째 강좌:

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode

완료하는 데 약 28시간 필요

영어

자막: 영어

귀하가 습득할 기술

Artificial Intelligence (AI)Machine LearningReinforcement LearningFunction ApproximationIntelligent Systems

공유 가능한 수료증

완료 시 수료증 획득

100% 온라인

지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.

다음 특화 과정의 1개 강좌 중 1번째 강좌:

유동적 마감일

일정에 따라 마감일을 재설정합니다.

중급 단계

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode

완료하는 데 약 28시간 필요

영어

자막: 영어

제공자:

앨버타 대학교 로고

앨버타 대학교

Alberta Machine Intelligence Institute 로고

Alberta Machine Intelligence Institute

강의 계획 - 이 강좌에서 배울 내용

콘텐츠 평가Thumbs Up92%(1,780개의 평가)Info
1

1

완료하는 데 1시간 필요

Welcome to the Course!

완료하는 데 1시간 필요
2개 동영상 (총 10분), 2 개의 읽기 자료
2개의 동영상
Meet your instructors!8m
2개의 읽기 자료
Reinforcement Learning Textbook10m
Read Me: Pre-requisites and Learning Objectives10m
2

2

완료하는 데 4시간 필요

Monte Carlo Methods for Prediction & Control

완료하는 데 4시간 필요
11개 동영상 (총 58분), 2 개의 읽기 자료, 1 개의 테스트
11개의 동영상
Using Monte Carlo for Prediction6m
Using Monte Carlo for Action Values2m
Using Monte Carlo methods for generalized policy iteration2m
Solving the Blackjack Example3m
Epsilon-soft policies5m
Why does off-policy learning matter?4m
Importance Sampling4m
Off-Policy Monte Carlo Prediction5m
Emma Brunskill: Batch Reinforcement Learning12m
Week 1 Summary3m
2개의 읽기 자료
Weekly Reading40m
Chapter Summary40m
1개 연습문제
Graded Quiz30m
3

3

완료하는 데 6시간 필요

Temporal Difference Learning Methods for Prediction

완료하는 데 6시간 필요
6개 동영상 (총 37분), 1 개의 읽기 자료, 2 개의 테스트
6개의 동영상
Rich Sutton: The Importance of TD Learning6m
The advantages of temporal difference learning5m
Comparing TD and Monte Carlo5m
Andy Barto and Rich Sutton: More on the History of RL12m
Week 2 Summary2m
1개의 읽기 자료
Weekly Reading40m
1개 연습문제
Practice Quiz30m
4

4

완료하는 데 8시간 필요

Temporal Difference Learning Methods for Control

완료하는 데 8시간 필요
9개 동영상 (총 30분), 2 개의 읽기 자료, 2 개의 테스트
9개의 동영상
Sarsa in the Windy Grid World3m
What is Q-learning?3m
Q-learning in the Windy Grid World3m
How is Q-learning off-policy?4m
Expected Sarsa3m
Expected Sarsa in the Cliff World3m
Generality of Expected Sarsa1m
Week 3 Summary2m
2개의 읽기 자료
Weekly Reading40m
Chapter summary40m
1개 연습문제
Practice Quiz30m

강화 학습 특화 과정 정보

The Reinforcement Learning Specialization consists of 4 courses exploring the power of adaptive learning systems and artificial intelligence (AI). Harnessing the full potential of artificial intelligence requires adaptive learning systems. Learn how Reinforcement Learning (RL) solutions help solve real-world problems through trial-and-error interaction by implementing a complete RL solution from beginning to end. By the end of this Specialization, learners will understand the foundations of much of modern probabilistic artificial intelligence (AI) and be prepared to take more advanced courses or to apply AI tools and ideas to real-world problems. This content will focus on “small-scale” problems in order to understand the foundations of Reinforcement Learning, as taught by world-renowned experts at the University of Alberta, Faculty of Science. The tools learned in this Specialization can be applied to game development (AI), customer interaction (how a website interacts with customers), smart assistants, recommender systems, supply chain, industrial control, finance, oil & gas pipelines, industrial control systems, and more....
강화 학습

자주 묻는 질문

  • 강좌에 등록하면 바로 모든 비디오, 테스트 및 프로그래밍 과제(해당하는 경우)에 접근할 수 있습니다. 상호 첨삭 과제는 이 세션이 시작된 경우에만 제출하고 검토할 수 있습니다. 강좌를 구매하지 않고 살펴보기만 하면 특정 과제에 접근하지 못할 수 있습니다.

  • 강좌를 등록하면 전문 분야의 모든 강좌에 접근할 수 있고 강좌를 완료하면 수료증을 취득할 수 있습니다. 전자 수료증이 성취도 페이지에 추가되며 해당 페이지에서 수료증을 인쇄하거나 LinkedIn 프로필에 수료증을 추가할 수 있습니다. 강좌 내용만 읽고 살펴보려면 해당 강좌를 무료로 청강할 수 있습니다.

  • 구독하는 경우, 취소해도 요금이 청구되지 않는 7일간의 무료 평가판을 이용할 수 있습니다. 해당 기간이 지난 후에는 환불이 되지 않지만, 언제든 구독을 취소할 수 있습니다. 전체 환불 정책 보기.

  • 예, Coursera에서는 수업료를 낼 수 없는 학습자를 위해 재정 지원을 제공합니다. 왼쪽에 있는 등록 버튼 아래 재정 지원 링크를 클릭하면 지원할 수 있습니다. 신청서를 작성하라는 메시지가 표시되며 승인되면 알림을 받습니다. 성취 프로젝트를 포함하여 전문 분야의 각 강좌에서 이 단계를 완료해야 합니다. 자세히 알아보기.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.