This course is an introduction to sequence models and their applications, including an overview of sequence model architectures and how to handle inputs of variable length.
이 강좌는 Advanced Machine Learning on Google Cloud 특화 과정의 일부입니다.
제공자:
이 강좌에 대하여
제공자:

Google 클라우드
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
강의 계획표 - 이 강좌에서 배울 내용
Working with Sequences
In this module, you’ll learn what a sequence is, see how you can prepare sequence data for modeling, and be introduced to some classical approaches to sequence modeling and practice applying them.
Recurrent Neural Networks
In this module, we introduce recurrent neural nets, explain how they address the variable-length sequence problem, explain how our traditional optimization procedure applies to RNNs, and review the limits of what RNNs can and can’t represent.
Dealing with Longer Sequences
In this module we dive deeper into RNNs. We’ll talk about LSTMs, Deep RNNs, working with real world data, and more.
Text Classification
In this module we look at different ways of working with text and how to create your own text classification models.
Reusable Embeddings
Labeled data for our classification models is expensive and precious. Here we will address how we can reuse pre-trained embeddings to make our models with TensorFlow Hub.
Encoder-Decoder Models
In this module, we focus on a sequence-to-sequence model called the encoder-decoder network to solve tasks, such as Machine Translation, Text Summarization and Question Answering.
Summary
In this final module, we review what you have learned so far about sequence modeling for time-series and natural language data.
검토
- 5 stars63.50%
- 4 stars22.36%
- 3 stars8.22%
- 2 stars2.95%
- 1 star2.95%
SEQUENCE MODELS FOR TIME SERIES AND NATURAL LANGUAGE PROCESSING의 최상위 리뷰
Though not focused on fundamental concepts, it's a great course to learn to use tensorflow and google cloud platform for sequence modelling.
Great way to practically learn a lot of stuff. Sometimes, a lot of it starts to go over head. But, it is completely worth the learning curve! Definitely recommend it!
Good Course with enough practical exercises to get some hands on experience.
Very good.The explanation of the RNN was very good but the tensor2tensor was very hard.
Advanced Machine Learning on Google Cloud 특화 과정 정보
This 5-course specialization focuses on advanced machine learning topics using Google Cloud Platform where you will get hands-on experience optimizing, deploying, and scaling production ML models of various types in hands-on labs. This specialization picks up where “Machine Learning on GCP” left off and teaches you how to build scalable, accurate, and production-ready models for structured data, image data, time-series, and natural language text. It ends with a course on building recommendation systems. Topics introduced in earlier courses are referenced in later courses, so it is recommended that you take the courses in exactly this order.

자주 묻는 질문
등록 전에 강좌를 미리 볼 수 있나요?
등록하면 무엇을 이용할 수 있나요?
강좌 수료증을 언제 받게 되나요?
이 강좌를 청강할 수 없는 이유는 무엇인가요?
재정 지원을 받을 수 있나요?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.