이 강좌에 대하여

최근 조회 2,310
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 5개 강좌 중 4번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 11시간 필요
독일어
자막: 프랑스어, 포르투갈어 (브라질), 독일어, 영어, 스페인어, 일본어...
공유 가능한 수료증
완료 시 수료증 획득
100% 온라인
지금 바로 시작해 나만의 일정에 따라 학습을 진행하세요.
다음 특화 과정의 5개 강좌 중 4번째 강좌:
유동적 마감일
일정에 따라 마감일을 재설정합니다.
중급 단계
완료하는 데 약 11시간 필요
독일어
자막: 프랑스어, 포르투갈어 (브라질), 독일어, 영어, 스페인어, 일본어...

제공자:

Google 클라우드 로고

Google 클라우드

강의 계획 - 이 강좌에서 배울 내용

1

1

완료하는 데 17분 필요

Willkommen zur serverlosen Datenanalyse mit Google BigQuery und Cloud Dataflow

완료하는 데 17분 필요
1개 동영상 (총 7분), 1 개의 읽기 자료
1개의 동영상
1개의 읽기 자료
Kursressourcen herunterladen10m
완료하는 데 6시간 필요

Serverlose Datenanalyse mit BigQuery

완료하는 데 6시간 필요
19개 동영상 (총 123분)
19개의 동영상
Was ist BigQuery?5m
Demonstration von BigQuery3m
Vorteile von BigQuery7m
BigQuery in einer Referenzarchitektur8m
Abfragen und Funktionen8m
Unterabfragen und mehrere Tabellen3m
Lab – Serverlose Datenanalyse (Java/Python): Teil 12m
Lab-Demo und Wiederholung9m
Daten laden und exportieren2m
Lab-Demo und Wiederholung13m
Erweiterte Funktionen in BigQuery7m
Arrays und Strukturen6m
Join-Bedingung und Fensterfunktionen6m
Benutzerdefinierte Funktionen3m
Lab-Demo und Wiederholung14m
Leistung und Preise7m
Platzhaltertabellen und Partitionierung7m
Pläne und Kategorien in BigQuery4m
1개 연습문제
Modul 1: Quiz30m
완료하는 데 5시간 필요

Datenverarbeitungspipelines mit Dataflow automatisch skalieren

완료하는 데 5시간 필요
12개 동영상 (총 97분)
12개의 동영상
Datenpipelines in Java und Python schreiben9m
Eingabe, Ausgabe und Ausführen6m
Lab-Demo und Wiederholung18m
MapReduce und parallele Verarbeitung11m
Gruppieren nach und Kombinieren7m
Kombinieren versus Gruppieren nach7m
Lab-Demo und Wiederholung6m
Nebeneingaben7m
Lab-Demo und Wiederholung10m
Dataflow-Vorlagen und Dataprep4m
Ressourcen31
1개 연습문제
Modul 2 – Quiz30m

Data Engineering on Google Cloud Platform auf Deutsch 특화 과정 정보

Dieser fünfwöchige Onlinevertiefungskurs bietet eine praktische Einführung zum Entwerfen und Erstellen von Datenverarbeitungssystemen auf der Google Cloud Platform. In Präsentationen, Demos und praxisorientierten Labs entwickeln die Teilnehmer Datenverarbeitungssysteme, erstellen End-to-End-Datenpipelines, analysieren Daten und üben maschinelles Lernen. Dieser Kurs vermittelt den Teilnehmern die folgenden Kompetenzen: • Datenverarbeitungssysteme auf der Google Cloud Platform entwickeln • Unstrukturierte Daten mit Spark und ML-APIs auf Cloud Dataproc verwenden • Batch- und Streaming-Daten durch die Implementierung von Autoscaling-Datenpipelines auf Cloud Dataflow verarbeiten • Mit Google BigQuery Geschäftsinformationen aus extrem großen Datasets ableiten • Modelle des maschinellen Lernens mit TensorFlow und Cloud ML trainieren, auswerten und damit Vorhersagen treffen • Sofortige Statistiken aus Streaming-Daten ermöglichen • Dieser Kurs richtet sich an erfahrene Entwickler, die für die Verwaltung von Big Data-Transformationen verantwortlich sind, zum Beispiel: • Daten extrahieren, laden, transformieren, bereinigen und validieren • Pipelines und Architekturen für die Datenverarbeitung entwerfen • Modelle des maschinellen Lernens und der Statistik erstellen und warten • Datasets abfragen, Abfrageergebnisse visualisieren und Berichte erstellen >>> Mit Ihrer Teilnahme an dieser Spezialisierung stimmen Sie den Nutzungsbedingungen von Qwiklabs zu, die Sie in den FAQs und unter folgendem Link finden: https://qwiklabs.com/terms_of_service <<<...
Data Engineering on Google Cloud Platform auf Deutsch

자주 묻는 질문

  • Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.

  • If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.

  • Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.

  • If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.

  • This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.