This course aims to help you to draw better statistical inferences from empirical research. First, we will discuss how to correctly interpret p-values, effect sizes, confidence intervals, Bayes Factors, and likelihood ratios, and how these statistics answer different questions you might be interested in. Then, you will learn how to design experiments where the false positive rate is controlled, and how to decide upon the sample size for your study, for example in order to achieve high statistical power. Subsequently, you will learn how to interpret evidence in the scientific literature given widespread publication bias, for example by learning about p-curve analysis. Finally, we will talk about how to do philosophy of science, theory construction, and cumulative science, including how to perform replication studies, why and how to pre-register your experiment, and how to share your results following Open Science principles.
이 강좌에 대하여
학습자 경력 결과
17%
12%
귀하가 습득할 기술
학습자 경력 결과
17%
12%
제공자:

아이트호벤 공과 대학
Eindhoven University of Technology (TU/e) is a young university, founded in 1956 by industry, local government and academia. Today, their spirit of collaboration is still at the heart of the university community. We foster an open culture where everyone feels free to exchange ideas and take initiatives.
강의 계획 - 이 강좌에서 배울 내용
Introduction + Frequentist Statistics
Likelihoods & Bayesian Statistics
Multiple Comparisons, Statistical Power, Pre-Registration
Effect Sizes
검토
IMPROVING YOUR STATISTICAL INFERENCES의 최상위 리뷰
Excellent course. The lecturer has written code snippets that let the students visualize the meaning and interrelationship of p-values confidence-intervals power effect-size bayesian-inference.
Excellent explanations. Strong examples. Helpful exercises. Highly recommended for anyone who ever has to conduct inferential statistics or read anything that reports a p value or bayes factor.
Great course to dig a bit deeper into some very useful statistical concept. 4 starts as many of the contents are not "open" as the course preaches (see Microsoft Office documents or GPower).
Excellent course with a lot to learn. After 10 years in data analysis it provided me with great new insights and material to further improve my skills and understanding of data analysis
자주 묻는 질문
강의 및 과제를 언제 이용할 수 있게 되나요?
이 수료증을 구매하면 무엇을 이용할 수 있나요?
Is financial aid available?
In which languages is this course available?
궁금한 점이 더 있으신가요? 학습자 도움말 센터를 방문해 보세요.