Chevron Left
Введение в машинное обучение(으)로 돌아가기

국립 연구 고등 경제 대학의 Введение в машинное обучение 학습자 리뷰 및 피드백

4.6
별점
2,303개의 평가
468개의 리뷰

강좌 소개

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

최상위 리뷰

AL
2018년 9월 24일

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

DD
2016년 2월 9일

Спасибо за курс. Хороший материал. Отличные задания.\n\nЕсть желание пройти курс "Практическое машинное обучение" с большим количеством примеров и практик от авторов этого курса.

필터링 기준:

Введение в машинное обучение의 452개 리뷰 중 401~425

교육 기관: Шубин Н Ю

2018년 9월 3일

Спасибо! Было познавательно.

교육 기관: Anton R

2016년 1월 30일

Порог входа очень большой.

교육 기관: Рыжов М С

2016년 2월 14일

Some problems with tasks.

교육 기관: Сидоров К О

2020년 9월 13일

Не для новичков такое.

교육 기관: Pavlov A

2016년 8월 17일

Good intro

교육 기관: Alexey K

2017년 3월 15일

В целом не плохой курс, дает представление о машинном обучении. Охватывает много тем, один из немногих на русском языке. Очень понравился финальный проект на реальных данных. Большой недостаток курса проявляется еще до его начала - это неточное описание сложности, слишком мягкие требования к слушателям. Читаем: "нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования." На самом деле математика в курсе явно не для человека который просто "знает об основных понятиях", в этих понятиях надо хорошо разбираться, чтобы не возникло проблем с пониманием теоретической части. Базовых навыков программирования вам так же не хватит, придется осваиваить все на ходу.

Что еще не понравилось:

По теории - её очень много, но она вообще не используется в практических задания. В практике почти везде используются готовые библиотеки, использование которых возможно вообще без тех знаний, что даются в лекциях. Лекции читаются в типичной университетской манере, когда лектор уверен в достаточности знаний у аудитории, идет по материалу быстро, не вдаваясь в глубокие разъяснения. Именно слушать такие лекции смысла не много, с тем же успехом их можно было просто выложить в виде мини-учебника вместе со слайдами, эффект был бы тот же.

По практике - в лекциях не ни слова по практике на Python, выполняя практические задания придется ориентироваться только на не всегда полные текстовые описания и все время читать документацию по библиотекам языка (sklear, pandas, numpy). Из-за этого задания, оцененные на 3 часа выполнения, превращаются во все 9 часов, а по началу и более, пока вы не освоите язык и не накопите кодовую базу, куски из которой позже можно будет использовать повторно.

Если вы хорошо знаете высшую математику на уровне 2-3 курса технического вуза, вы не новичек в программирование, то этот курс для вас. Конечно, курс можно протий и так, но часть теории останется для вас загадкой, а на практику вы потратите в разы больше заявленного врмени.

교육 기관: Pavel A

2016년 3월 2일

Курс новый, и хотя очень интересный, весьма сырой. Не считая всяких мелких технических ошибок, которые авторы исправляют достаточно быстро, всё даётся совсем по верхам. Без толкового описания что к чему и зачем. Примеров явно не достаточно. А практические задания весьма далеки от теории. Не в том смысле что они не о том, а скорее в них нужно выполнить работу, делая системные вызовы некоторых библиотек питона. При этом прямой связи почему эти вызовы, а не другие, почему так, и что там должно происходить либо не повествуется, либо умалчивается :)

Но я рад что прошёл и закончил этот курс. Рад также что "пришлось" познакомиться с Python (моё мнение о нём немного улучшилось).

교육 기관: Vladimir L

2018년 2월 4일

Сначала было интересно... Но потом, - встречаются ошибки в тексте. Темы начинаются с видео, потом переходят в загруженный отдельно PDF. Какая-то сборная солянка. В видео идут общие теоретические знания - аля как важен Machine Learning в общих фразах, а чтобы решить задачу предлагается изучить ссылки на другие курсы для работы с Python Notebook и pandas - зачем тогда ваш курс если все приходиться самому изучать на английских сайтах?

Невозможно пройти простейшие тесты из-за ошибки в принятии правильного ответа. Сложные ответы были приняты. Система приема ответов не продумана по сравнению с другими курсами Coursera. Типичный Яндекс.

교육 기관: Андрей П

2019년 7월 23일

Курс должен называться "Введение в математические основы машинного обучения". Много сухой теории без примеров из реальной жизни. Да могу я теперь написать регрессию с нуля, только толку то? Зашел на kaggle взялся за титаник и понял, что я ничего не знаю о тех самых основах предобработки данных и их визуализации, выбора фич и их создания. Да конечно неплохо понимать, что происходит когда стучишь молотком по гвоздю, но все же думаю логично сначала научить правильно пользоваться молотком, а потом уже углубляться, чтобы можно было пилить собственные молотки.

교육 기관: Баранов В М

2020년 9월 23일

Курс не для новичков. Вам здесь не будут всё разжевывать (объяснять формулы, приводить учебные примеры, учить писать код). Вы должны знать хотя бы про линейную регрессию, неплохой навык программирования на Python, язык запросов SQL в первом приближении, если вы не знакомы с pandas. Иначе вы на первых неделях просто сольетесь. Лично я, перед тем как начать этот курс, прошёл курсы "Основы программирования на Python" и "Эконометрика". Мне было не просто. Если хотите познать ML пробуйте, читайте статьи, смотрите видео. Старт вы получите. Успехов.

교육 기관: Dmitry Y

2016년 3월 12일

Курс сыроват. Складывается ощущение, что делали его "на коленке" и в последний момент.

Материал очень интересный, но подан очень своеобразно.

Что ожидалось? Хотелось рассмотреть теорию, попробовать реализовать это на практике, и затем сравнить на реальной задаче свой велосипед и готовые пакеты. Что вышло - четко разделенная сухая теория и совершенно библиотеко-ориентированная практика.

교육 기관: Semen K

2016년 3월 25일

не хватает глубины обзора материала, лекции Воронцова на сайте яндекс, кажутся гораздо подробнее, структурированнее и понятнее.

задания часто не согласуются с лекциями, без предварительных знаний python и scikitlearn не обойтись

скрипты проверки скриптов с ошибками(

осталось впечатление что курс очень сырой(

교육 기관: Dmitriy S

2017년 8월 4일

Курс вполне неплох. Уровень преподавателей в соответствующей области высок, но название "Введение..." не соответствует содержимому, чтобы лучше понять нужно быть хорошо подкованным в математике, а также уже иметь представление об МЛ.

교육 기관: Nikolay B

2016년 2월 12일

Лекции очень короткие и насыщенные, порой задумываешься над формулой, а пропустил уже 3 новых. Всет-ки есть какой-то лимит по времени воспринимания информации, нельзя все формулы уместить в 5 минут не потеряв часть аудитории

교육 기관: Коротков В Е

2019년 6월 18일

Много теории, при этом мало визуализации - не всегда понятно, что имеет в виду лектор. Совсем нет лекций с примерами решения схожих задач. Мало задач (в идеале должно быть 10от простых (на 10-20 минут) к сложным

교육 기관: Drozhnikov A

2016년 2월 6일

Курс требует хорошего знания Python. В лекциях в основном теория без примеров с кучей формул. В практических модулях реализация метода средствами Python. Нюансы настройки метода не объясняются.

교육 기관: Evgenii D

2018년 6월 5일

На мой взгляд, в качестве начального обучения курс тяжеловат, более-менее понимаешь о чём идёт речь только к концу. Поэтому рекомендую для освежения просмотреть курс второй раз.

교육 기관: Гаманец Р А

2019년 3월 17일

Вот смотрю я видео, и понимаю, что ничего не понимаю. А беру задания, выполняю, и начинаю понимать. Но главное не понимаю, а зачем нужна какая модель. А это очень грустно.

교육 기관: Аминов А Ф

2020년 10월 22일

Лекции непонятные (кроме асперов). Практика неплохая, но несколько устаревшая - она написана на втором питоне, и копипаст формул часто выдает ошибку.

교육 기관: Narek

2016년 3월 20일

Хорошие задание по практите. Теория конечно для продвинутых дается, но в целом какое представление о предмете появляется, но очень слабое.

교육 기관: Victor A

2020년 6월 3일

Что плохо:

Очень мало практики

Теория сильно оторвана от практики

По Нейросетям нет практики

Что хорошо:

Всё остальное

교육 기관: Peter K

2016년 2월 5일

Need very strong skills and experience in Python. Also, some basic knowledge in ML also is necessary.

교육 기관: Ustinov M

2016년 5월 3일

Очень сухой стиль изложения. Почти ничего не рассказано о существенно используемом в курсе python.

교육 기관: Andrei V

2016년 3월 16일

сырые практические задачи. мало примеров в лекциях, мало практики. слишком по-академически.

교육 기관: Andrey T

2016년 3월 14일

very little relationship between lectures and assignments. was expected more practices