Sampling novel sequences

Loading...
강의 계획서 보기

배우게 될 기술

Recurrent Neural Network, Artificial Neural Network, Deep Learning, Long Short-Term Memory (ISTM)

검토

4.8(19,857개의 평가)
  • 5 stars
    84%
  • 4 stars
    13%
  • 3 stars
    2%
  • 2 stars
    0%
  • 1 star
    0%
NM

Feb 21, 2018

Hope can elaborate the backpropagation of RNN much more. BP through time is a bit tricky though we do not need to think about it during implementation using most of existing deep learning frameworks.

SD

Sep 28, 2018

Great hands on instruction on how RNNs work and how they are used to solve real problems. It was particularly useful to use Conv1D, Bidirectional and Attention layers into RNNs and see how they work.

수업에서
Recurrent Neural Networks
Learn about recurrent neural networks. This type of model has been proven to perform extremely well on temporal data. It has several variants including LSTMs, GRUs and Bidirectional RNNs, which you are going to learn about in this section.

강사:

  • Andrew Ng

    Andrew Ng

    CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
  • Head Teaching Assistant - Kian Katanforoosh

    Head Teaching Assistant - Kian Katanforoosh

    Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
  • Teaching Assistant - Younes Bensouda Mourri

    Teaching Assistant - Younes Bensouda Mourri

    Mathematical & Computational Sciences, Stanford University, deeplearning.ai

Coursera 카탈로그 살펴보기

무료로 참여해 맞춤화된 추천, 업데이트 및 제안을 받아보세요.